Skip to main content
Log in

Zerebrale Bildgebung bei angeborenen Stoffwechselfehlern

Eine pädiatrische Annäherung

Cerebral imaging for inborn errors of metabolism

A pediatric approach

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Bei Kindern mit unklaren zerebralen Symptomen steht die Bildgebung im diagnostischen Prozess an früher Stelle. Im MRT (Magnetresonanztomogramm) führen angeborene Stoffwechseldefekte mit zerebraler Auswirkung oft zu verhältnismäßig dezenten, aber manchmal sehr charakteristischen morphologischen Veränderungen. Diese können auf Gruppen metabolischer Störungen und gelegentlich unmittelbar auf die Diagnose hinweisen. Voraussetzung hierzu ist neben einer adäquaten Untersuchungstechnik die systematische Suche nach bestimmten zerebralen Läsionsmustern. Die wichtigsten derartigen Muster werden vorgestellt. Da sich viele Stoffwechselfehler auf die Reifung des kindlichen Gehirns auswirken, ist bei der Bildanalyse, besonders bei Kindern unter 2 Jahren, sorgfältig auf den altersgerechten Ablauf der Myelinbildung zu achten. Besteht beim Pädiater bereits aus klinischen Gründen der Verdacht auf ein Stoffwechselleiden, sollte der Neuroradiologe bereits vor der bildgebenden Untersuchung kontaktiert werden, um zusätzliche spezielle Techniken („diffusion tensor imaging“, „susceptibility weighted imaging“, MR-Spektroskopie, T2-Relaxometrie) optimal nutzen zu können.

Abstract

In children with cerebral symptoms of unidentified origin, cerebral imaging has an early place in the diagnostic process. Inborn errors of metabolism with cerebral repercussions frequently cause relatively mild but sometimes very characteristic magnetic resonance imaging (MRI) changes. These alterations can give indications for groups of metabolic disturbances and occasionally lead directly to the diagnosis. A prerequisite is a systematic search for certain patterns of brain lesions in addition to an adequate examination technique. The most important of such patterns are presented. As many metabolic errors have an effect on brain maturation, image analysis, in particular of children under the age of 2 years, must pay careful attention to the age-adequate stage of myelination. When pediatricians already suspect a metabolic disease on clinical grounds, a discussion with neuroradiologists prior to imaging is advisable in order to make optimal use of special auxiliary techniques, such as diffusion tensor imaging, susceptibility-weighted imaging, MR spectroscopy or T2 relaxometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Abbreviations

ADC:

„Apparent diffusion coefficient“

CDG:

„Carboanhydrate-deficient glycoprotein“

CLN2:

Spätinfantile neuronale Ceroidlipofuszinose

CSI:

„Chemical shift imaging“

CT:

Computertomographie

DTI:

„Diffusion tensor imaging“

DWI:

„Diffusion weighted imaging“

FA:

Fraktionelle Anisotropie

FLAIR:

„Fluid-attenuated inversion recovery“

LBSL:

„Leukodystrophy with brainstem and spinal cord involvement and high lactate“

MLC:

Megalenzephale Leukenzephalopathie mit subkortikalen Zysten

MRS:

Magnetresonanzspektroskopie

MRT:

Magnetresonanztomographie

NAA :

N-Azetyl-Aspartat

NBIA:

„Neurodegeneration with brain iron accumulation“

NCL:

Neuronale Ceroidlipofuszinose

QSM:

Quantitative Suszeptibilitätsmessung

R*:

Effektive transversale Relaxationsrate

SWI:

Suszeptibilitätsgewichtete Bildgebung

T1:

Longitudinale Relaxationszeit

T2:

Transversale Relaxationszeit

X-ALD:

X-chromosomale Adrenoleukodystrophie

Literatur

  1. Barkovich A, Moore K, Jones B et al (2007) Metabolic disorders. In: Barkovich A, Moore K, Grant E et al (Hrsg) Diagnostic imaging – pediatric neuroradiology. Amirsys, Salt Lake City, S I-1-400–124

  2. Cakmakci H, Pekcevik Y, Yis U et al (2010) Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature. Eur J Radiol 74:e161–e171

    Article  PubMed  Google Scholar 

  3. Caruso PA, Poussaint TY, Tzika AA et al (2004) MRI and 1H MRS findings in Smith-Lemli-Opitz syndrome. Neuroradiology 46:3–14

    Article  PubMed  CAS  Google Scholar 

  4. Cecil KM (2006) MR spectroscopy of metabolic disorders. Neuroimaging Clin N Am 16:87–116, viii

    Article  PubMed  Google Scholar 

  5. Deistung A, Mentzel HJ, Rauscher A et al (2006) Demonstration of paramagnetic and diamagnetic cerebral lesions by using susceptibility weighted phase imaging (SWI). Z Med Phys 16:261–267

    PubMed  Google Scholar 

  6. Ding XQ, Kucinski T, Wittkugel O et al (2004) Normal brain maturation characterized with age-related T2 relaxation times: an attempt to develop a quantitative imaging measure for clinical use. Invest Radiol 39:740–746

    Article  PubMed  Google Scholar 

  7. Engelbrecht V, Scherer A, Rassek M et al (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222:410–418

    Article  PubMed  Google Scholar 

  8. Haberle J, Gorg B, Toutain A et al (2006) Inborn error of amino acid synthesis: human glutamine synthetase deficiency. J Inherit Metab Dis 29:352–358

    Article  PubMed  Google Scholar 

  9. Kohlschütter A, Eichler F (2011) Childhood leukodystrophies: a clinical perspective. Expert Rev Neurother 11:1485–1496

    Article  PubMed  Google Scholar 

  10. Löbel U, Sedlacik J, Gullmar D et al (2009) Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology 51:253–263

    Article  PubMed  Google Scholar 

  11. Löbel U, Sedlacik J, Sabin ND et al (2010) Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology 52:1167–1177

    Article  PubMed  Google Scholar 

  12. Morava E, Wevers RA, Cantagrel V et al (2010) A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain 133:3210–3220

    Article  PubMed  Google Scholar 

  13. Nasrallah F, Feki M, Kaabachi N (2010) Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol 42:163–171

    Article  PubMed  Google Scholar 

  14. Nissenkorn A, Michelson M, Ben-Zeev B et al (2001) Inborn errors of metabolism: a cause of abnormal brain development. Neurology 56:1265–1272

    Article  PubMed  CAS  Google Scholar 

  15. Patay Z (2005) Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol 15:2284–2303

    Article  PubMed  Google Scholar 

  16. Patay Z (2005) Metabolic disorders. In: Tortori-Donati P (Hrsg) Pediatric neuroradiology – brain. Springer, Berlin Heidelberg New York, S 543–721

  17. Poretti A, Wolf NI, Boltshauser E (2008) Differential diagnosis of cerebellar atrophy in childhood. Eur J Paediatr Neurol 12:155–167

    Article  PubMed  Google Scholar 

  18. Sawaishi Y (2009) Review of Alexander disease: beyond the classical concept of leukodystrophy. Brain Dev 31:493–498

    Article  PubMed  Google Scholar 

  19. Schiffmann R, Van der Knaap MS (2009) An MRI-based approach to the diagnosis of white matter disorders. Neurology 72:750–759

    Article  PubMed  Google Scholar 

  20. Schneider SA, Hardy J, Bhatia KP (2012) Syndromes of neurodegeneration with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord 27:42–53

    Article  PubMed  CAS  Google Scholar 

  21. Schulz A (2012) NCL-Krankheiten. Monatsschr Kinderheilkd 8

  22. Schweser F, Deistung A, Lehr BW et al (2011) Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 54:2789–2807

    Article  PubMed  Google Scholar 

  23. Shah DK, Tingay DG, Fink AM et al (2005) Magnetic resonance imaging in neonatal nonketotic hyperglycinemia. Pediatr Neurol 33:50–52

    Article  PubMed  Google Scholar 

  24. Soares-Fernandes JP, Teixeira-Gomes R, Cruz R et al (2008) Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings. Pediatr Radiol 38:559–562

    Article  PubMed  Google Scholar 

  25. Staudt M, Krageloh-Mann I, Grodd W (2000) Die normale Myelinisierung des kindlichen Gehirns in der MRT – eine Metaanalyse. Rofo 172:802–811

    Article  PubMed  CAS  Google Scholar 

  26. Steenweg ME, Vanderver A, Blaser S et al (2010) Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain 133:2971–2982

    Article  PubMed  Google Scholar 

  27. Steenweg ME, Ghezzi D, Haack T et al (2012) Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‚LTBL‘ caused by EARS2 mutations. Brain 135:1387–1394

    Article  PubMed  Google Scholar 

  28. Szumowski J, Bas E, Gaarder K et al (2010) Measurement of brain iron distribution in Hallervorden-Spatz syndrome. J Magn Reson Imaging 31:482–489

    Article  PubMed  Google Scholar 

  29. Van der Knaap MS, Valk J (2005) Magnetic resonance of myelination and myelin disorders. Springer, Berlin Heidelberg New York

  30. Weller S, Rosewich H, Gärtner J (2008) Cerebral MRI as a valuable diagnostic tool in Zellweger spectrum patients. J Inherit Metab Dis 31:270–280

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Dr. Jan Sedlacik, MRT-Physik, Neuroradiologie, UKE Hamburg, und Dr. Ferdinand Schweser, AG Medizinische Physik, IDIR, Universitätsklinikum Jena, danken wir für die quantitativen Eisenbestimmungen.

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kohlschütter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlschütter, A., Löbel, U. Zerebrale Bildgebung bei angeborenen Stoffwechselfehlern. Monatsschr Kinderheilkd 160, 742–749 (2012). https://doi.org/10.1007/s00112-012-2686-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-012-2686-5

Schlüsselwörter

Keywords

Navigation