Advertisement

Monatsschrift Kinderheilkunde

, Volume 160, Issue 11, pp 1096–1102 | Cite as

Frühe Ernährung und langfristiges Adipositasrisiko

Chancen für die pädiatrische Prävention
  • B. BrandsEmail author
  • B. KoletzkoEmail author
Leitthema

Zusammenfassung

Die stark gestiegene Rate an Übergewicht und Adipositas sowie die damit einhergehenden funktionellen Stoffwechselstörungen rücken immer mehr in den Fokus der Strategien zur Förderung der öffentlichen Gesundheit. Hinsichtlich der Langzeiteffekte der Ernährung in frühen Lebensabschnitten auf das spätere Adipositasrisiko und die damit assoziierten Erkrankungen nahm das Ausmaß an wissenschaftlicher Evidenz im vergangenen Jahrzehnt deutlich zu. Der Begriff der metabolischen Programmierung beschreibt die dauerhafte Manifestation von Veränderungen des kindlichen Stoffwechsels oder anderer Funktionen durch die frühe prä- und postnatale Ernährung sowie durch mütterliche Lebensstilfaktoren während der Schwangerschaft. Der vorliegende Beitrag führt in das Konzept der metabolischen Programmierung ein und stellt die zentralen Hypothesen dar, welche aktuell in der Forschung untersucht werden. International werden diese Fragestellungen im derzeit weltweit größten, von der Europäischen Union geförderten Forschungsprojekt EarlyNutrition (http://www.project-earlynutrition.eu) bearbeitet, mit dem Ziel, konkrete Empfehlungen und Strategien zur präventiven Intervention im frühen Lebensalter zu entwickeln.

Schlüsselwörter

Pränatale Ernährung Frühe Ernährung Metabolische Programmierung Adipositas Nichtübertragbare Erkrankungen 

Early nutrition and long-term adiposity risk

Opportunities for pediatric practice

Abstract

Scientific evidence for long-term effects of nutrition in early life on the later risk for adiposity and associated disorders has rapidly increased during the last decade. The phenomenon referred to as metabolic or developmental programming describes persisting changes in metabolic and other body functions caused by early nutrition and lifestyle factors and receives widespread attention due to its major public health importance. The present article offers an introduction into the concept of early nutrition programming and describes the key hypotheses which current research activities on the effects on later risk of adiposity and related disorders focus on. Combined international expertise in this area is brought together in the European Commission funded research project EarlyNutrition (http://www.project-earlynutrition.eu) which aims to refine recommendations and strategies for preventive intervention during early life.

Keywords

Prenatal nutritional physiology Infant nutritional physiology Metabolic programming Obesity Non-communicable disease risk 

Notes

Interessenkonflikt

Die korrespondierenden Autoren geben an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Arenz S, Ruckerl R, Koletzko B et al (2004) Breast-feeding and childhood obesity – a systematic review. Int J Obes 28:1247–1256CrossRefGoogle Scholar
  2. 2.
    Barker DJP, Osmond C, Forsen TJ et al (2005) Trajectories of growth among children who have coronary events as adults. N Engl J Med 353:1802–1809PubMedCrossRefGoogle Scholar
  3. 3.
    Catalano PM, Presley L, Minium J et al (2009) Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 32:1076–1080PubMedCrossRefGoogle Scholar
  4. 4.
    Dörner G (1975) Perinatal hormone levels and brain organization. In: Stumpf WE, Grant LD (Hrsg) Anatomical neuroendocrinology. Karger, Basel, S 245–252 Google Scholar
  5. 5.
    Druet C, Stettler N, Sharp S et al (2012) Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr Perinat Epidemiol 26:19–26PubMedCrossRefGoogle Scholar
  6. 6.
    Escribano J, Luque V, Ferre N et al (2012) Effect of protein intake and weight gain velocity on body fat mass at 6 months of age: the EU Childhood Obesity Programme. Int J Obes (Lond) 36:548–553Google Scholar
  7. 7.
    Franks PW, Hanson RL, Knowler WC et al (2010) Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med 362:485–493PubMedCrossRefGoogle Scholar
  8. 8.
    Godfrey KM, Gluckman PD, Hanson MA (2010) Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab 21:199–205PubMedCrossRefGoogle Scholar
  9. 9.
    Hanley B, Dijane J, Fewtrell M et al (2010) Metabolic imprinting, programming and epigenetics – a review of present priorities and future opportunities. Br J Nutr 104:S1–S25PubMedCrossRefGoogle Scholar
  10. 10.
    Hossain P, Kawar B, Nahas ME (2007) Obesity and diabetes in the developing world – a growing challenge. N Engl J Med 356:213–215PubMedCrossRefGoogle Scholar
  11. 11.
    Koletzko B (2011) The power of programming: developmental origins of health and disease. Am J Clin Nutr 94:1747S–2043SPubMedCrossRefGoogle Scholar
  12. 12.
    Koletzko B, von Kries R, Closa R et al (2009) Can infant feeding choices modulate later obesity risk? Am J Clin Nutr 89:1502S–1508SPubMedCrossRefGoogle Scholar
  13. 13.
    Koletzko B, von Kries R, Closa R et al (2009) Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr 89:1836–1845PubMedCrossRefGoogle Scholar
  14. 14.
    Koletzko B, Symonds M, Olsen SF, for the Early Nutrition Programming Project and the Early Nutrition Academy (2011) Programming research – where are we and where do we go from here? Am J Clin Nutr 94:2036S–2043SPubMedCrossRefGoogle Scholar
  15. 15.
    Koletzko B, Brands B, Poston L et al (2012) Early nutrition programming of long-term health. Proc Nutr Soc 71:371–378PubMedCrossRefGoogle Scholar
  16. 16.
    Koletzko B, Beyer J, Brands B et al (im Druck) Early influences of nutrition on postnatal growth. Karger, BaselGoogle Scholar
  17. 17.
    Lamb MM, Dabelea D, Yin X et al (2010) Early-life predictors of higher body mass index in healthy children. Ann Nutr Metab 56:16–22PubMedCrossRefGoogle Scholar
  18. 18.
    Lawlor DA, Timpson NJ, Harbord RM et al (2008) Exploring the developmental overnutrition hypothesis using parental-offspring associations and FTO as an instrumental variable. PLoS Med 5:484–493CrossRefGoogle Scholar
  19. 19.
    Monteiro POA, Victora CG (2005) Rapid growth in infancy and childhood and obesity in later life – a systematic review. Obes Rev 6:143–154PubMedCrossRefGoogle Scholar
  20. 20.
    Ong KK, Loos RJF (2006) Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr 95:904–908PubMedCrossRefGoogle Scholar
  21. 21.
    Patel MS, Srinivasan M (2011) Metabolic programming in the immediate postnatal life. Ann Nutr Metab [Suppl 2] 58:18–28Google Scholar
  22. 22.
    Ruemmele FM (2011) Early programming effects of nutrition – life-long consequences? Ann Nutr Metab [Suppl 2] 58:5–6Google Scholar
  23. 23.
    Sassi F (2010) Obesity and the economics of prevention: fit not fat. OECD, Paris, S 265Google Scholar
  24. 24.
    Sebire NJ, Jolly M, Harris JP et al (2001) Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. Int J Obes 25:1175–1182CrossRefGoogle Scholar
  25. 25.
    Smith J, Cianflone K, Biron S et al (2009) Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J Clin Endocrinol Metab 94:4275–4283PubMedCrossRefGoogle Scholar
  26. 26.
    Socha P, Grote V, Gruszfeld D et al (2011) Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr 94:1776S–1784SPubMedCrossRefGoogle Scholar
  27. 27.
    Stettler N, Kumanyika SK, Katz SH et al (2003) Rapid weight gain during infancy and obesity in young adulthood in a cohort of African Americans. Am J Clin Nutr 77:1374–1378PubMedGoogle Scholar
  28. 28.
    Toschke AM, Grote V, Koletzko B et al (2004) Identifying children at high risk for overweight at school entry by weight gain during the first 2 years. Arch Pediatr Adolesc Med 158:449–452PubMedCrossRefGoogle Scholar
  29. 29.
    Tounian P (2011) Programming towards childhood obesity. Ann Nutr Metab [Suppl 2] 58:30–41Google Scholar
  30. 30.
    Turck D, Agostoni C, Braegger C et al (2009) Breast-feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 49:112–125PubMedCrossRefGoogle Scholar
  31. 31.
    Weber M, Grote V, Closa-Monasterolo R et al (under review) Higher protein content in infant formula increases obesity risk at school age: a randomized clinical trial. BMJGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Abteilung Stoffwechsel- und ErnährungsmedizinDr. von Haunersches Kinderspital, Ludwig-Maximilian-UniversitätMünchenDeutschland

Personalised recommendations