Skip to main content
Log in

Prävention der kindlichen Adipositas durch die Säuglingsernährung

Prevention of pediatric obesity through baby nutrition

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Neben familiären Risikofaktoren und dem Lebensstil im Kindes- und Jugendalter beeinflussen prä- und postnatale Einflussfaktoren das spätere Adipositasrisiko. Prägende Auswirkungen metabolischer Faktoren während begrenzter, sensibler Zeitfenster der frühen Entwicklung auf die langfristige Gesundheit und das Krankheitsrisiko werden als frühe metabolische Programmierung der langfristigen Gesundheit bezeichnet. Die mögliche Bedeutung der Säuglingsernährung unterstreicht der Befund eines schützenden Effekts des Stillens auf das spätere Adipositasrisiko in zahlreichen Studien und drei Metaanalysen. Stillen könnte gegen spätere Adipositas durch eine geringere mittlere Gewichtszunahme im Säuglingsalter schützen, bedingt durch den geringeren Eiweißgehalt in Muttermilch im Vergleich zu Säuglingsnahrungen („frühe Proteinhypothese“). Wir prüften diese Hypothese in der European Childhood Obesity Study. Die erzielte Verminderung der Gewichtszunahme in den ersten beiden Lebensjahren könnte die Häufigkeit der Adipositas im Jugendalter um etwa 13% vermindern. Diese Ergebnisse sollten dazu ermuntern, derzeitige Empfehlungen zur Säuglingsernährung und deren Umsetzung zu überprüfen.

Abstract

The prevalence of overweight and obesity among children and adolescents in Germany has doubled in less than two decades. In addition to familial risk factors and children’s lifestyle, prenatal and postnatal factors modulate the long-term risk of obesity. The imprinting effects of metabolic variables during limited, sensitive time periods of prenatal and postnatal development on long-term health and disease risk is called early metabolic programming of long term health. The role of infant nutrition is supported by a reduced obesity risk in previously breastfed compared to formula fed subjects, documented in numerous studies and three meta-analyses. Breastfeeding might protect against later obesity by inducing lesser weight gain in infancy due to the lower protein content of human milk compared to infant formulas (the early protein hypothesis). We tested this hypothesis in the European Childhood Obesity Study, a double-blind randomized clinical trial enrolling 1,678 infants in 5 countries (Belgium, Germany, Italy, Poland and Spain). Reduced protein intake in infancy normalized growth achieved at 2 years of age relative to breastfed infants and the current WHO growth standard. The difference in weight gain up to 2 years old could reduce the prevalence of obesity in adolescence by some 13%. We conclude that infant feeding practice has a high potential for long-term health effects. The results obtained should stimulate the review of current recommendations and policies for infant formula composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Kurth BM, Schaffrath Rosario A (2007) The prevalence of overweight and obese children and adolescents living in Germany. Results of the german health interview and examination survey for children and adolescents (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 50:736–743

    Article  PubMed  Google Scholar 

  2. Fisberg M, Baur L, Chen W et al (2004) Obesity in children and adolescents: Working group report of the second world congress of pediatric gastroenterology, hepatology and nutrition. J Pediatr Gastroenterol Nutr 39(Suppl 2):S678–S687

    Article  PubMed  Google Scholar 

  3. Koletzko B, Girardet JP, Klish W, Tabacco O (2002) Obesity in children and adolescents worldwide: current views and future directions – working group report of the first world congress of pediatric gastroenterology, hepatology and nutrition. J Pediatr Gastroenterol Nutr 35(Suppl 2):S205–S212

    Article  PubMed  Google Scholar 

  4. Nathan BM (2009) The current state of pediatric obesity treatment. Rev Endocr Metab Disord 10:163–165

    Article  PubMed  Google Scholar 

  5. Daniels SR, Jacobson MS, McCrindle BW et al (2009) American heart association childhood obesity research summit report. Circulation 119:e489–e517

    Article  PubMed  Google Scholar 

  6. Bayer O, Kries R von, Strauss A et al (2009) Short- and mid-term effects of a setting based prevention program to reduce obesity risk factors in children: a cluster-randomized trial. Clin Nutr 28:122–128

    Article  PubMed  Google Scholar 

  7. Kleiser C, Schaffrath Rosario A, Mensink GB et al (2009) Potential determinants of obesity among children and adolescents in Germany: results from the cross-sectional KiGGS study. BMC Public Health 9:46

    Article  PubMed  Google Scholar 

  8. Koletzko B, Toschke AM (2010) Meal patterns and frequencies: do they affect body weight in children and adolescents? Crit Rev Food Sci Nutr 50:100–105

    Article  PubMed  Google Scholar 

  9. Toschke AM, Koletzko B, Slikker W Jr et al (2002) Childhood obesity is associated with maternal smoking in pregnancy. Eur J Pediatr 161:445–448

    Article  CAS  PubMed  Google Scholar 

  10. Koletzko B (2005) Early nutrition and its later consequences: new opportunities. Adv Exp Med Biol 569:1–12

    Article  PubMed  Google Scholar 

  11. Koletzko BDT, Molnar D, Hunty A de la (eds) (2009) Early nutrition programming and health outcomes in later life: obesity and beyond. Springer, New York

  12. Dörner G (1975) Perinatal hormone levels and brain organization. In: Stumpf WE, Grant LD (eds) Anatomical neuroendocrinology. Karger, Basel, pp 245–252

  13. Schmidt I, Schoelch C, Ziska T et al (2000) Interaction of genetic and environmental programming of the leptin system and of obesity disposition. Physiol Genomics 3:113–120

    CAS  PubMed  Google Scholar 

  14. Fernandez-Twinn DS, Ozanne SE (2006) Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav 88:234–243

    Article  CAS  PubMed  Google Scholar 

  15. Koletzko B, Kries R von, Monasterolo RC et al (2009) Infant feeding and later obesity risk. Adv Exp Med Biol 646:15–29

    Article  PubMed  Google Scholar 

  16. McCance RA, Widdowson EM (1974) The determinants of growth and form. Proc R Soc Lond B Biol Sci 185:1–17

    Article  CAS  PubMed  Google Scholar 

  17. Lucas A (1994) Role of nutritional programming in determining adult morbidity. Arch Dis Child 71:288–290

    Article  CAS  PubMed  Google Scholar 

  18. Lucas A (1991) Programming by early nutrition in man. Ciba Found Symp 156:38–50; discussion 50–35

    CAS  PubMed  Google Scholar 

  19. Waterland RA, Garza C (1999) Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 69:179–197

    CAS  PubMed  Google Scholar 

  20. Barker DJ (2007) The origins of the developmental origins theory. J Intern Med 261:412–417

    Article  CAS  PubMed  Google Scholar 

  21. Barker DJ (1990) The fetal and infant origins of adult disease. BMJ 301:1111

    Article  CAS  PubMed  Google Scholar 

  22. Singhal A, Lucas A (2004) Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet 363:1642–1645

    Article  PubMed  Google Scholar 

  23. Koletzko B (2005) Developmental origins of adult disease: Barker’s or Dorner’s hypothesis? Am J Hum Biol 17:381–382

    Article  PubMed  Google Scholar 

  24. Koletzko B (2009) EARNEST – the early nutrition programming project – objectives and achievements. Standardy Medyczne (Warsaw) (Suppl 1):1–16

    Google Scholar 

  25. Koletzko B, Kries R von, Closa R et al (2009) Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr 89:1836–1845

    Article  CAS  PubMed  Google Scholar 

  26. Hincz P, Borowski D, Krekora M et al (2009) Maternal obesity as a perinatal risk factor. Ginekol Pol 80:334–337

    PubMed  Google Scholar 

  27. Kalk P, Guthmann F, Krause K et al (2009) Impact of maternal body mass index on neonatal outcome. Eur J Med Res 14:216–222

    CAS  PubMed  Google Scholar 

  28. Jeffreys M, Lawlor DA, Galobardes B et al (2006) Lifecourse weight patterns and adult-onset diabetes: the Glasgow alumni and British women’s heart and health studies. Int J Obes (Lond) 30:507–512

    Google Scholar 

  29. Monteiro PO, Victora CG, Barros FC, Monteiro LM (2003) Birth size, early childhood growth and adolescent obesity in a Brazilian birth cohort. Int J Obes Relat Metab Disord 27:1274–1282

    Article  CAS  PubMed  Google Scholar 

  30. Sorensen HT, Sabroe S, Rothman KJ et al (1997) Relation between weight and length at birth and body mass index in young adulthood: cohort study. BMJ 315:1137

    CAS  PubMed  Google Scholar 

  31. Toschke AM, Grote V, Koletzko B, Kries R von (2004) Identifying children at high risk for overweight at school entry by weight gain during the first 2 years. Arch Pediatr Adolesc Med 158:449–452

    Article  PubMed  Google Scholar 

  32. Baird J, Fisher D, Lucas P et al (2005) Being big or growing fast: systematic review of size and growth in infancy and later obesity. BMJ 331:929

    Article  PubMed  Google Scholar 

  33. Monteiro PO, Victora CG (2005) Rapid growth in infancy and childhood and obesity in later life – a systematic review. Obes Rev 6:143–154

    Article  CAS  PubMed  Google Scholar 

  34. Ong KK, Loos RJ (2006) Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr 95:904–908

    Article  PubMed  Google Scholar 

  35. Koletzko B, Broekaert I, Demmelmair H et al (2005) Protein intake in the first year of life: a risk factor for later obesity? The E.U. childhood obesity project. Adv Exp Med Biol 569:69–79

    Article  PubMed  Google Scholar 

  36. Koletzko B (2006) Long-term consequences of early feeding on later obesity risk. Nestle Nutr Workshop Ser Pediatr Program 58:1–18

    Article  PubMed  Google Scholar 

  37. Dewey KG (2009) Infant feeding and growth. Adv Exp Med Biol 639:57–66

    Article  CAS  PubMed  Google Scholar 

  38. Nommsen-Rivers LA, Dewey KG (2009) Growth of breastfed infants. Breastfeed Med 4(Suppl 1):S45–S49

    Article  PubMed  Google Scholar 

  39. Kramer MS, Guo T, Platt RW et al (2004) Feeding effects on growth during infancy. J Pediatr 145:600–605

    Article  PubMed  Google Scholar 

  40. Dewey KG (1998) Growth characteristics of breast-fed compared to formula-fed infants. Biol Neonate 74:94–105

    Article  CAS  PubMed  Google Scholar 

  41. Kramer MS (1981) Do breast-feeding and delayed introduction of solid foods protect against subsequent obesity? J Pediatr 98:883–887

    Article  CAS  PubMed  Google Scholar 

  42. Kries R von, Koletzko B, Sauerwald T et al (1999) Breast feeding and obesity: cross sectional study. BMJ 319:147–150

    Google Scholar 

  43. Arenz S, Ruckerl R, Koletzko B, Kries R von (2004) Breast-feeding and childhood obesity – a systematic review. Int J Obes Relat Metab Disord 28:1247–1256

    Article  CAS  PubMed  Google Scholar 

  44. Harder T, Bergmann R, Kallischnigg G, Plagemann A (2005) Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol 162:397–403

    Article  PubMed  Google Scholar 

  45. Owen CG, Martin RM, Whincup PH et al (2005) Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics 115:1367–1377

    Article  PubMed  Google Scholar 

  46. Kramer MS, Matush L, Vanilovich I et al (2009) A randomized breast-feeding promotion intervention did not reduce child obesity in Belarus. J Nutr 139:417S–421S

    CAS  PubMed  Google Scholar 

  47. Kramer MS, Matush L, Vanilovich I et al (2007) Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity and blood pressure at age 6.5 y: evidence from a large randomized trial. Am J Clin Nutr 86:1717–1721

    CAS  PubMed  Google Scholar 

  48. Ruckinger S, Kries R von (2009) Breastfeeding and reduced risk of childhood obesity: will randomized trials on breastfeeding promotion give the definite answer? Am J Clin Nutr 89:653–655; author reply 655

    Article  PubMed  Google Scholar 

Download references

Dank

Den teilnehmenden Familien und Projektpartnern danken wir für ihre Unterstützung. Die dargestellten Untersuchungen wurden finanziell gefördert durch die Europäische Kommission, Generaldirektorat Forschung, Brüssel, im 5. Forschungsrahmenprogramm (Förderkennzeichen QLRT–2001–00389 und QLK1-CT-2002–30582), im 6. Forschungsrahmenprogramm (Förderkennzeichen 007036) und im 7. Forschungsrahmenprogramm (Förderkennzeichen 212652), durch das Bundesministerium für Bildung und Forschung, Klinisches Kompetenznetzwerk Adipositas, Verbundprojekt MEMORI, durch das Münchener Zentrum für Gesundheitswissenschaften McHealth und durch die Stiftung Kindergesundheit, München. BK ist der Empfänger eines Freedom to Discover Award der Bristol-Myers-Squibb-Stiftung, New York, NY, USA.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Koletzko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koletzko, B., Grote, V., Schiess, S. et al. Prävention der kindlichen Adipositas durch die Säuglingsernährung. Monatsschr Kinderheilkd 158, 553–563 (2010). https://doi.org/10.1007/s00112-009-2158-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-009-2158-8

Schlüsselwörter

Keywords

Navigation