Skip to main content
Log in

Systemphysiologisch begründete Therapien bei Zerebralparesen

Laufbandtherapie, „Robotic Medicine“ (Lokomat®) und „Constraint Induced Movement Therapy“ (CIMT)

Movement science and intervention in cerebral palsy

Treadmill training, Robotic Medicine (Lokomat®), and Constraint-Induced Movement Therapy

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Der Einsatz bildgebender Verfahren und neurophysiologischer Techniken erlaubt in zunehmendem Maße die Exploration neuroplastischer Veränderungen, wie sie möglicherweise infolge einer Intervention im zentralen Nervensystem (ZNS) auftreten können. Dies wird anhand von Laufbanduntersuchungen zur Pathophysiologie des Ganges, zur robotergestützten Laufbandtherapie (Lokomat®) und für die obere Extremität exemplarisch für die „constraint induced movement therapy“ (CIMT) – Behandlungen, die sich durch Aufgabenspezifität und Zielorientierung auszeichnen – dargestellt. Sowohl auf spinaler als auch auf kortikaler Ebene lassen sich durch die Interventionen hervorgerufene Veränderungen nachweisen und Unterschiede im Ansprechen auf die Therapie in Abhängigkeit des Läsions- und Reorganisationstyps darstellen. Dies belegt, dass eine aufgabenspezifische Plastizität des ZNS bei Patienten mit Zerebralparese vorhanden ist und dass in klinischen Studien systemphysiologische Untersuchungen und Erkenntnisse als Stratifizierung- oder Evaluationsinstrument Berücksichtigung finden sollten.

Abstract

Functional magnetic resonance imaging and neurophysiological techniques allow the investigation of plastic changes that might take place, through therapeutic interventions, within the nervous systems of patients with cerebral palsy. This is outlined using studies dealing with treadmill training/spinal reflex modulation, robotic medicine (Lokomat®), and constraint induced movement therapy. These examples show that plastic changes do occur and that the type of lesion and the reorganisation of the nervous system might have an impact on treatment outcome. These findings underpin the idea that movement science should be an integral consideration when planning clinical studies for patients with cerebral palsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Berger W (1998) Characteristics of locomotor control in children with cerebral palsy. Neurosci Biobehav Rev 22:579–582

    Article  CAS  PubMed  Google Scholar 

  2. Berger W, Altenmueller E, Dietz V (1984) Normal and impaired development of children’s gait. Hum Neurobiol 3:163–170

    CAS  PubMed  Google Scholar 

  3. Berweck S, Walther M, Brodbeck V et al (2008) Abnormal motor cortex excitability in congenital stroke. Pediatr Res 63:84–88

    Article  PubMed  Google Scholar 

  4. Blicher JU, Nielsen JF (2009) Cortical and spinal excitability changes after robotic gait training in healthy participants. Neurorehabil Neural Repair 23:143–149

    PubMed  Google Scholar 

  5. Borggraefe I, Kumar A, Schäfer JS et al (2007) Robotergestützte Laufbandtherapie für Kinder mit zentralen Gangstörungen. Monatsschr Kinderheilkd 155:529–534

    Article  Google Scholar 

  6. Capaday C (2002) The special nature of human walking and its neural control. Trends Neurosci 25:370–376

    Article  CAS  PubMed  Google Scholar 

  7. Charles JR, Wolf SL, Schneider JA, Gordon AM (2006) Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol 48:635–642

    Article  PubMed  Google Scholar 

  8. Damiano DL, DeJong SL (2009) A systematic review of the effectiveness of treadmill training and body weight support in pediatric rehabilitation. J Neurol Phys Ther 33:27–44

    PubMed  Google Scholar 

  9. Dodd KJ, Foley S (2007) Partial body-weight-supported treadmill training can improve walking in children with cerebral palsy: a clinical controlled trial. Dev Med Child Neurol 49:101–105

    Article  PubMed  Google Scholar 

  10. Forssberg H (1999) Neural control of human motor development. Curr Opin Neurobiol 9:676–682

    Article  CAS  PubMed  Google Scholar 

  11. Gordon AM, Charles J, Wolf SL (2005) Methods of constraint-induced movement therapy for children with hemiplegic cerebral palsy: development of a child-friendly intervention for improving upper-extremity function. Arch Phys Med Rehabil 86:837–844

    Article  PubMed  Google Scholar 

  12. Hesse S (2001) Locomotor therapy in neurorehabilitation. NeuroRehabilitation 16:133–139

    CAS  PubMed  Google Scholar 

  13. Himmelmann K, Beckung E, Hagberg G, Uvebrant P (2007) Bilateral spastic cerebral palsy – prevalence through four decades, motor function and growth. Eur J Paediatr Neurol 11:215–222

    Article  PubMed  Google Scholar 

  14. Hoare BJ, Wasiak J, Imms C, Carey L (2007) Constraint-induced movement therapy in the treatment of the upper limb in children with hemiplegic cerebral palsy. Cochrane Database Syst Rev 2:CD004149

    PubMed  Google Scholar 

  15. Hodapp M, Klisch C, Mall V et al (2007) Modulation of soleus H-reflexes during gait in children with cerebral palsy. J Neurophysiol 98:3263–3268

    Article  PubMed  Google Scholar 

  16. Hodapp M, Klisch C, Mall V et al (2009) Changes in soleus H-reflex modulation after treadmill training in children with cerebral palsy. Brain 132:37–44

    Article  PubMed  Google Scholar 

  17. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21:642–653

    Article  PubMed  Google Scholar 

  18. Jahn K, Deutschlander A, Stephan T et al (2008) Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 39:786–792

    Article  PubMed  Google Scholar 

  19. Juenger H, Linder-Lucht M, Walther M et al (2007) Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study. Neuropediatrics 38:130–136

    Article  CAS  PubMed  Google Scholar 

  20. Karni A, Meyer G, Jezzard P et al (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158

    Article  CAS  PubMed  Google Scholar 

  21. Koenig A, Wellner M, Koneke S et al (2008) Virtual gait training for children with cerebral palsy using the Lokomat® gait orthosis. Stud Health Technol Inform 132:204–209

    PubMed  Google Scholar 

  22. Krageloh-Mann I (2004) Imaging of early brain injury and cortical plasticity. Exp Neurol [Suppl 1] 190:S84–S90

  23. Krageloh-Mann I, Horber V (2007) The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: a systematic review. Dev Med Child Neurol 49:144–151

    Article  PubMed  Google Scholar 

  24. Kuhnke N, Juenger H, Walther M et al (2008) Is constraint-induced movement therapy less effective in congenital hemiparesis with ipsilateral cortico-spinal projections? Dev Med Child Neurol 50:898–903

    Article  CAS  PubMed  Google Scholar 

  25. Meyer-Heim A, Ammann-Reiffer C, Schmartz A et al (2009) Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child 94(8):615–620

    Article  CAS  PubMed  Google Scholar 

  26. Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401

    Article  CAS  PubMed  Google Scholar 

  27. Platt MJ, Cans C, Johnson A et al (2007) Trends in cerebral palsy among infants of very low birthweight (<1500 g) or born prematurely (<32 weeks) in 16 European centres: a database study. Lancet 369:43–50

    Article  PubMed  Google Scholar 

  28. Rosenbaum P, Paneth N, Leviton AMG, Bax M (2007) The definition and classification of cerebral palsy. Dev Med Child Neurol 49:8–14

    Google Scholar 

  29. SCPE (2002) Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol 44:633–640

    Google Scholar 

  30. Staudt M, Gerloff C, Grodd W et al (2004) Reorganization in congenital hemiparesis acquired at different gestational ages. Ann Neurol 56:854–863

    Article  PubMed  Google Scholar 

  31. Staudt M, Grodd W, Gerloff C et al (2002) Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain 125:2222–2237

    Article  PubMed  Google Scholar 

  32. Vexler ZS, Sharp FR, Feuerstein GZ et al (2006) Translational stroke research in the developing brain. Pediatr Neurol 34:459–463

    Article  PubMed  Google Scholar 

  33. Walther M, Juenger H, Kuhnke N et al (2009) Motor cortex plasticity in ischemic perinatal stroke: a transcranial magnetic stimulation and functional MRI study. Pediatr Neurol 41:171–178

    Article  PubMed  Google Scholar 

  34. Wolf SL (2007) Revisting constraint-induced movement therapy: we are too smitten with the mitten? Is all nonuse learned? And other quandaries. Phys Ther 87:1212–1223

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Berweck.

Additional information

Die Forschungsarbeiten zu CIMT wurden durch die Deutsche Forschungsgemeinschaft gefördert (Projektnr. STA 859/1-1, BE 3235/1-1, MA 3306/1-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berweck, S., Staudt, M., Mall, V. et al. Systemphysiologisch begründete Therapien bei Zerebralparesen. Monatsschr Kinderheilkd 157, 1113–1119 (2009). https://doi.org/10.1007/s00112-009-2037-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-009-2037-3

Schlüsselwörter

Keywords

Navigation