Skip to main content
Log in

Schilddrüsenhormon und Störungen des Zentralnervensystems

Thyroid hormone and disorders of the central nervous system

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Eine Hypothyreose führt in der vulnerablen Phase der Entwicklung des Zentralnervensystems (ZNS) während der Schwangerschaft und in den ersten beiden Lebensjahren zu einer schweren mentalen und motorischen Retardierung. In Analogie zu Befunden aus Tierversuchen wird die Retardierung durch eine neuronale Migrationsstörung und eine reduzierte axonale Ausbildung verursacht. Die vorliegende Übersicht fasst die Befunde zur Behandlung einer maternen und neonatalen Hypothyreose zusammen und erläutert die aktuelle Datenlage zur Frage einer ggf. auftretenden ZNS-Störung bei nur geringer Schilddrüsenfunktionsstörung. Darüber hinaus werden seltenere Differenzialdiagnosen einer ZNS-Schädigung bei genetischen Defekten der Schilddrüsenhormonwirkung (MCT8-Defekt) und in Assoziation mit Schilddrüsenerkrankungen (Hashimoto-Enzephalopathie und NKX2.1-Gen-Defekt) besprochen.

Abstract

During the sensitive period of fetal and neonatal development, thyroid hormone deficiency leads to severe defects of the central nervous system (CNS), including mental retardation and movement defects. These clinical symptoms can be explained, based on animal studies, by a migration defect of cortical neurons as well as by reduced axonal connectivity. This review discusses the established knowledge in treating maternal and congenital hypothyroidism to avoid mental retardation. In addition, the findings on treating pregnant women and neonates with only borderline hypothyroidism are summarized. The differential diagnoses for more rare diseases of thyroid hormone resistance within the CNS (MCT8 defect), as well as defects of CNS development associated with thyroid diseases that have recently been described in children (Hashimoto’s encephalopathy and NKX2.1 deficiency syndrome), are summarized as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abalovich M, Amino N, Barbour LA et al. (2007) Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 92: S1–S47

    Article  PubMed  CAS  Google Scholar 

  2. Alink J, De Vries TW (2008) Unexplained seizures, confusion or hallucinations: think Hashimoto encephalopathy. Acta Paediatr 97: 451–453

    Article  PubMed  Google Scholar 

  3. Ausó E, Lavado-Autric R, Cuevas E et al. (2004) A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology 145: 4037–4047

    Article  PubMed  Google Scholar 

  4. Bongers-Schokking JJ, De Muinck Keizer-Schrama SM (2005) Influence of timing and dose of thyroid hormone replacement on mental,psychomotor and behavioral development in children with congenital hypothyroidism. J Pediatr 147: 768–774

    Article  PubMed  CAS  Google Scholar 

  5. Cao XY, Jiang XM, Dou ZH et al. (1994) Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N Engl J Med 331: 1739–1744

    Article  PubMed  CAS  Google Scholar 

  6. Chong JY, Rowland LP, Utiger RD (2003) Hashimoto encephalopathy: syndrome or myth? Arch Neurol 60: 164–171

    Article  PubMed  Google Scholar 

  7. Fisher D (1998) Thyroid function in preterm infants. The hypothyroxinemia of prematurity. Clin Perinatol 25: 999–1014

    PubMed  CAS  Google Scholar 

  8. Foley TP, Abassi V, Copeland KC et al. (1994) Hypothyroidism caused by chronic autoimmune thyroiditis in very young infants. N Engl J Med 330: 466–468

    Article  PubMed  Google Scholar 

  9. Friesema EC, Grüters A, Biebermann H et al. (2004) Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364: 1435–1437

    Article  PubMed  CAS  Google Scholar 

  10. Haddow JE, Palomaki GE, Allan WC et al. (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 341: 549–555

    Article  PubMed  CAS  Google Scholar 

  11. Heyerdahl S (2001) Longterm outcome in children with congenital hypothyroidism. Acta Pediatr 90: 1220–1222

    Article  CAS  Google Scholar 

  12. Iskaros J, Pickard M, Evans I et al. (2000) Thyroid hormone receptor gene expression in first trimester human fetal brain. J Clin Endocrinol Metab 85: 2620–2623

    Article  PubMed  CAS  Google Scholar 

  13. Krude H, Schütz B, Biebermann H et al. (2002) Choreoathetosis, hypothyroidism and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest 109: 475–480

    PubMed  CAS  Google Scholar 

  14. Lucas A, Morley R, Fewtrell MS (1996) Low triiodothyronine concentration in preterm infants and subsequent intelligence quotient (IQ) at 8 year follow up. BMJ 312: 1132–1133

    PubMed  CAS  Google Scholar 

  15. Osborn DA, Hunt RW (2007) Postnatal thyroid hormones for preterm infants with transient hypothyroxinaemia. Cochrane Database Syst Rev 24: CD005945

    Google Scholar 

  16. Osler W (1897) Sporadic cretinism. Trans Congress of American Physicians and Surgeons 4: 169–206

    Google Scholar 

  17. Polak M, Legac I, Vuillard E et al. (2006) Congenital hyperthyroidism: the fetus as a patient. Horm Res 65: 235–242

    Article  PubMed  CAS  Google Scholar 

  18. Reuss ML, Paneth N, Pinto-Martin JA et al. (1996) The relation of transient hypothyroxinemia in preterm infants to neurologic development at two years of age. N Engl J Med 334: 821–827

    Article  PubMed  CAS  Google Scholar 

  19. Revetoff S, Weiss RE, Usala SJ et al. (1993) The syndrome of resistance to thyroid hormone. Endocr Rev 14: 348–399

    Article  Google Scholar 

  20. Richard K, Hume R, Kaptein E et al. (2001) Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung and brain. J Clin Endocrinol Metab 86: 2734–2742

    Article  PubMed  CAS  Google Scholar 

  21. Rovet JF (2005) Children with congenital hypothyroidism and their siblings: do they really differ? Pediatrics 115: e52–e57

    PubMed  Google Scholar 

  22. Schwartz CE, May MM, Carpenter NJ et al. (2005) Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am J Hum Genet 77: 41–53

    Article  PubMed  CAS  Google Scholar 

  23. Selva KA, Harper A, Downs A et al. (2005) Neurodevelopmental outcomes in congenital hypothyroidism: comparison of initial T4 dose and time to reach target T4 and TSH. J Pediatr 147: 775–780

    Article  PubMed  CAS  Google Scholar 

  24. Visser WE, Friesema EC, Jansen J et al. 2008) Thyroid hormone transport in and out of cells. Trends Endocrinol Metab 19: 50–56

    Google Scholar 

  25. Vulsma T, Gons MH, De Vijlder JJ (1989) Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med 321: 13–16

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Krude.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krude, H. Schilddrüsenhormon und Störungen des Zentralnervensystems. Monatsschr Kinderheilkd 156, 961–971 (2008). https://doi.org/10.1007/s00112-008-1757-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-008-1757-0

Schlüsselwörter

Keywords

Navigation