Skip to main content
Log in

Beiträge der klinischen Neurophysiologie zum Verständnis der Entwicklung des Gehirns

Clinical neurophysiological contribution to our understanding of brain development

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Die klinische Neurophysiologie bedient sich einer Vielzahl von funktionellen und strukturellen Methoden zur Erforschung des sich entwickelnden Gehirns. Die physiologischen Korrelate motorischen Lernens, neuronaler Plastizität und deren Regulationsmechanismen lassen sich methodisch identifizieren und in ihrer Reifungsdynamik am sich entwickelnden Gehirn darstellen. Die neurophysiologischen Grundlagen komplexer Handlungsabläufe sind funktionell und bildgebend evaluiert und weisen eine signifikante Reifungsdynamik auf. Somit gelingt es der klinischen Neurophysiologie, der Beobachtung, dass Lernvorgänge und die Ausführung komplexer Handlungsabläufe einer Reifungsdynamik unterliegen, funktionelle und strukturelle Korrelate des sich entwickelnden Gehirns zuzuordnen.

Abstract

Clinical neurophysiology uses a number of functional and structural methods to explore the developing brain. Physiological correlations between motor learning, neuronal plasticity and their regulative mechanisms can be identified methodically and their dynamic maturation demonstrated inthe developing brain. The neurophysiological background of complex operational procedures is evaluated with functional and imaging technologies and shows a significant dynamic maturation. Consequently, clinical neurophysiology succeeds in allocating functional and structural correlates of the developing brain to the observation that learning processes and the execution of complex operational procedures underlie dynamic maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Barry RJ, Clarke AR, McCarthy R et al. (2004) Age and gender effects in EEG coherence: I. Developmental trends in normal children. Clin Neurophysiol 115: 2252–2258

    Article  PubMed  Google Scholar 

  2. Ben-Ari Y, Tseeb V, Raggozzino D et al. (1994) Gamma-aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life. Prog Brain Res 102: 261–273

    PubMed  Google Scholar 

  3. Chen R, Yung D, Li JY (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89: 1256–1264

    Article  PubMed  Google Scholar 

  4. Day BL, Rothwell JC, Thompson PD et al. (1987) Motor cortex stimulation in intact man 2. multiple descending volleys. Brain 110: 1191–1209

    Article  PubMed  Google Scholar 

  5. Ehrsson HH, Fagergren A, Jonsson T et al. (2000) Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83: 528–536

    PubMed  Google Scholar 

  6. Ehrsson HH, Fagergren E, Forssberg H (2001) Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol 85: 2613–2623

    PubMed  Google Scholar 

  7. Garvey MA, Ziemann U, Bartko JJ et al. (2003) Cortical correlates of neuromotor development in healthy children. Clin Neurophysiol 114: 1662–1670

    Article  PubMed  Google Scholar 

  8. Gerloff C, Cohen LG, Floeter MK et al. (1998) Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J Physiol (Lond) 510: 249–259

    Google Scholar 

  9. Heinen F, Glocker FX, Fietzek UM et al. (1998) Absence of transcallosal inhibition following focal magnetic stimulation in pre-school children. Ann Neurol 43: 608–612

    Article  PubMed  Google Scholar 

  10. Largo RH, Caflisch JA, Hug F et al. (2001) Neuromotor development from 5 to 18 years. Part 1: timed performance. Dev Med Child Neurol 43: 436–443

    Article  PubMed  Google Scholar 

  11. Mall V, Berweck S, Fietzek UM et al. (2004) Low level of intracortical inhibition in children shown by transcranial magnetic stimulation. Neuropediatrics 35: 120–125

    Article  PubMed  Google Scholar 

  12. Mall V, Linder M, Herpers M et al. (2005) Recruitment of the sensorimotor cortex–a developmental FMRI study. Neuropediatrics 36: 373–379

    Article  PubMed  Google Scholar 

  13. Muellbacher W, Ziemann U, Boroojerdi B et al. (2001) Role of the human motor cortex in rapid motor learning. Exp Brain Res 136: 431–438

    Article  PubMed  Google Scholar 

  14. Sanes JN (2000) Motor cortex rules for learning and memory. Curr Biol 10: R495–R497

    Article  PubMed  Google Scholar 

  15. Stefan K, Kunesch E, Benecke R et al. (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543: 699–708

    Article  PubMed  Google Scholar 

  16. Stefan K, Kunesch E, Cohen LG et al. (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123: 572–584

    Article  PubMed  Google Scholar 

  17. Toma K, Mima T, Matsuoka T et al. (2002) Movement rate effect on activation and functional coupling of motor cortical areas. J Neurophysiol 88: 3377–3385

    Article  PubMed  Google Scholar 

  18. Ziemann U, Ilic TV, Jung P (2006) Long-term potentiation (LTP)-like plasticity and learning in human motor cortex–investigations with transcranial magnetic stimulation (TMS). Clin Neurophysiol Suppl 59: 19–25

    Google Scholar 

  19. Ziemann U, Ilic TV, Pauli C et al. (2004) Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 24: 1666–1672

    Article  PubMed  Google Scholar 

  20. Ziemann U, Muellbacher W, Hallett M, Cohen LG (2001) Modulation of practice-dependent plasticity in human motor cortex. Brain 124: 1171–1181

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mall, V. Beiträge der klinischen Neurophysiologie zum Verständnis der Entwicklung des Gehirns. Monatsschr Kinderheilkd 155, 514–517 (2007). https://doi.org/10.1007/s00112-007-1522-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-007-1522-9

Schlüsselwörter

Keywords

Navigation