Skip to main content

Advertisement

Log in

Mitochondria targeted esculetin administration improves insulin resistance and hyperglycemia-induced atherosclerosis in db/db mice

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The development and progression of hyperglycemia (HG) and HG-associated atherosclerosis are exacerbated by mitochondrial dysfunction due to dysregulated mitochondria-derived ROS generation. We recently synthesized a novel mitochondria-targeted esculetin (Mito-Esc) and tested its dose–response therapeutic efficacy in mitigating HG-induced atherosclerosis in db/db mice. In comparison to simvastatin and pioglitazone, Mito-Esc administration resulted in a considerable reduction in body weights and improved glucose homeostasis, possibly by reducing hepatic gluconeogenesis, as indicated by a reduction in glycogen content, non-esterified free fatty acids (NEFA) levels, and fructose 1,6-bisphosphatase (FBPase) activity. Interestingly, Mito-Esc treatment, by regulating phospho-IRS and phospho-AKT levels, greatly improved palmitate-induced insulin resistance, resulting in enhanced glucose uptake in adipocytes and HepG2 cells. Also, and importantly, Mito-Esc administration prevented HG-induced atheromatous plaque formation and lipid accumulation in the descending aorta. In addition, Mito-Esc administration inhibited the HG-mediated increase in VACM, ICAM, and MAC3 levels in the aortic tissue, as well as reduced the serum pro-inflammatory cytokines and markers of senescence. In line with this, Mito-Esc significantly inhibited monocyte adherence to human aortic endothelial cells (HAECs) treated with high glucose and reduced high glucose-induced premature senescence in HAECs by activating the AMPK-SIRT1 pathway. In contrast, Mito-Esc failed to regulate high glucose-induced endothelial cell senescence under AMPK/SIRT1-depleted conditions. Together, the therapeutic efficacy of Mito-Esc in the mitigation of hyperglycemia-induced insulin resistance and the associated atherosclerosis is in part mediated by potentiating the AMPK-SIRT1 axis.

Key messages

  • Mito-Esc administration significantly mitigates diabetes-induced atherosclerosis.

  • Mito-Esc improves hyperglycemia (HG)-associated insulin resistance.

  • Mito-Esc inhibits HG-induced vascular senescence and inflammation in the aorta.

  • Mito-Esc-mediated activation of the AMPK-SIRT1 axis regulates HG-induced endothelial cell senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Di Pietrantonio N, Di Tomo P, Mandatori D, Formoso G, Pandolfi A (2023) Diabetes and its cardiovascular complications: potential role of the acetyltransferase p300. Cells 12(3):1–16

    Article  Google Scholar 

  2. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23(2):168–175

    Article  CAS  PubMed  Google Scholar 

  3. Badimon L, Vilahur G (2014) Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 276(6):618–632

    Article  CAS  PubMed  Google Scholar 

  4. Beverly JK, Budoff MJ (2020) Atherosclerosis: pathophysiology of insulin resistance, hyperglycemia, hyperlipidemia, and inflammation. J Diabetes 12(2):102–104

    Article  PubMed  Google Scholar 

  5. Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98(4):2133–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H (2022) Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 7(1):1–25

    PubMed  PubMed Central  Google Scholar 

  7. Popov D (2010) Endothelial cell dysfunction in hyperglycemia: phenotypic change, intracellular signaling modification, ultrastructural alteration, and potential clinical outcomes. Int J Diabetes Mellit [Internet] 2(3):189–95. https://doi.org/10.1016/j.ijdm.2010.09.002

    Article  CAS  Google Scholar 

  8. Kaur R, Kaur M, Singh J (2018) Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol [Internet] 17(1):1–17. https://doi.org/10.1186/s12933-018-0763-3

    Article  CAS  Google Scholar 

  9. Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY et al (2003) The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 111(9):1373–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hamed S, Brenner B, Roguin A (2011) Nitric oxide: a key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2. Cardiovasc Res 91(1):9–15

    Article  CAS  PubMed  Google Scholar 

  11. Wan Y, Liu Z, Wu A, Khan AH, Zhu Y, Ding S et al (2022) Hyperglycemia promotes endothelial cell senescence through AQR/PLAU signaling axis. Int J Mol Sci 23(5):5–9

    Article  Google Scholar 

  12. Sun HJ, Wu ZY, Nie XW, Bian JS (2020) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10(January):1–15

    CAS  Google Scholar 

  13. Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y (2017) Sirtuins in glucose and lipid metabolism. Oncotarget 8(1):1845–1859

    Article  PubMed  Google Scholar 

  14. Winnik S, Auwerx J, Sinclair DA, Matter CM (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36(48):3404–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sivanand (2019) Sirtuins, cell senescence, and vascular aging HHS Public Access. Physiol Behav 176(3):139–148

    Google Scholar 

  16. Yan P, Li Z, Xiong J, Geng Z, Wei W, Zhang Y et al (2021) LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Rep 37(8):110038

    Article  CAS  PubMed  Google Scholar 

  17. Budbazar E, Rodriguez F, Sanchez JM, Seta F (2020) The role of sirtuin-1 in the vasculature: focus on aortic aneurysm. Front Physiol 11(August):1–10

    Google Scholar 

  18. Winnik S, Stein S, M Matter C (2012) SIRT1 – an anti-inflammatory pathway at the crossroads between metabolic disease and atherosclerosis. Curr Vasc Pharmacol 10(6):693–696

    Article  CAS  PubMed  Google Scholar 

  19. Zhu Z, Li J, Zhang X (2019) Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway. BMC Complement Altern Med 19(1):1–10

    Article  Google Scholar 

  20. Zhou C, Tan Y, Xu B, Wang Y, Cheang WS (2022) 3,4′,5-Trimethoxy-trans-stilbene alleviates endothelial dysfunction in diabetic and obese mice via activation of the AMPK/SIRT1/eNOS pathway. Antioxidants 11(7):1–15

    Article  Google Scholar 

  21. Nishikawa T, Kukidome D, Sonoda K, Fujisawa K, Matsuhisa T, Motoshima H et al (2007) Impact of mitochondrial ROS production in the pathogenesis of insulin resistance. Diabetes Res Clin Pract 77(3 SUPPL.):161–164

    Article  Google Scholar 

  22. Nishikawa T, Edelstein D, Du XL, Yamagishi SI, Matsumura T, Kaneda Y et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790

    Article  CAS  PubMed  Google Scholar 

  23. Oyewole AO, Birch-Machin MA (2015) Mitochondria-targeted antioxidants. FASEB J 29(12):4766–4771

    Article  CAS  PubMed  Google Scholar 

  24. Shaikh A, Neeli PK, Singuru G, Panangipalli S, Banerjee R, Maddi SR et al (2021) A functional and self-assembling octyl-phosphonium-tagged esculetin as an effective siRNA delivery agent. Chem Commun 57(92):12329–12332

    Article  CAS  Google Scholar 

  25. Karnewar S, Vasamsetti SB, Gopoju R, Kanugula AK, Ganji SK, Prabhakar S et al (2016) Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. Sci Rep [Internet] 6(December 2015):1–18. https://doi.org/10.1038/srep24108

    Article  CAS  Google Scholar 

  26. Katta S, Karnewar S, Panuganti D, Jerald MK, Sastry BKS, Kotamraju S (2018) Mitochondria-targeted esculetin inhibits PAI-1 levels by modulating STAT3 activation and miR-19b via SIRT3: role in acute coronary artery syndrome. J Cell Physiol 233(1):214–225

    Article  CAS  PubMed  Google Scholar 

  27. Karnewar S, Pulipaka S, Katta S, Panuganti D, Neeli PK, Thennati R, Jerald MK, Kotamraju S (2022) Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe−/− mice. Atherosclerosis 356:28–40

    Article  CAS  PubMed  Google Scholar 

  28. Karnewar S, Neeli PK, Panuganti D, Kotagiri S, Mallappa S, Jain N et al (2018) Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol Basis Dis [Internet] 1864(4):1115–1128. https://doi.org/10.1016/j.bbadis.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  29. Cantó C, Auwerx J (2009) PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20(2):98–105

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hegarty BD, Turner N, Cooney GJ, Kraegen EW (2009) Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol 196(1):129–145

    Article  CAS  Google Scholar 

  31. Ono-Moore KD, Blackburn ML, Adams SH (2018) Is palmitate truly proinflammatory? Experimental confounders and context-specificity. Am J Physiol Endocrinol Metab 315(5):E780–E794

    Article  CAS  PubMed  Google Scholar 

  32. Kinsella GK, Cannito S, Bordano V, Stephens JC, Rosa AC, Miglio G et al (2021) GPR21 inhibition increases glucose-uptake in HepG2 cells. Int J Mol Sci 22(19):1–14

    Article  Google Scholar 

  33. Coelho RP, Feksa DL, Oliveira PM, da Costa Güllich AA, Pilar BC, da Costa Escobar Piccoli J et al (2018) Protective effect of the hydroalcoholic extract of Tripodanthus acutifolius in hypercholesterolemic Wistar rats. Biomed Pharmacother [Internet] 97(July 2017):300–309. https://doi.org/10.1016/j.biopha.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  34. Kubota N, Terauchi Y, Kubota T, Kumagai H, Itoh S, Satoh H et al (2006) Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. J Biol Chem [Internet] 281(13):8748–8755. https://doi.org/10.1074/jbc.M505649200

    Article  CAS  PubMed  Google Scholar 

  35. Iwanishi M, Kobayashi M (1993) Effect of pioglitazone on insulin receptors of skeletal muscles from high-fat-fed rats. Metabolism 42(8):1017–1021

    Article  CAS  PubMed  Google Scholar 

  36. Muscarà C, Molonia MS, Speciale A, Bashllari R, Cimino F, Occhiuto C et al (2019) Anthocyanins ameliorate palmitate-induced inflammation and insulin resistance in 3T3-L1 adipocytes. Phyther Res 33(7):1888–1897

    Article  Google Scholar 

  37. Malik SA, Acharya JD, Mehendale NK, Kamat SS, Ghaskadbi SS (2019) Pterostilbene reverses palmitic acid mediated insulin resistance in HepG2 cells by reducing oxidative stress and triglyceride accumulation. Free Radic Res 53(7):815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhupathiraju SN, Hu FB (2016) Epidemiología de la Obesidad y la Diabetes y sus Complicaciones Cardiovasculares. Circ Res [Internet] 118(11):1723–1735. http://www.ncbi.nlm.nih.gov/pubmed/27230638

  39. Reusch JEB, Draznin BB (2007) Atherosclerosis in diabetes and insulin resistance. Diabetes Obes Metab 9(4):455–463

    Article  CAS  PubMed  Google Scholar 

  40. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN (2020) The diabetes mellitus–atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci 21(5):1–13

    Article  Google Scholar 

  41. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948

    Article  CAS  PubMed  Google Scholar 

  42. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science (80-) 271(5249):665–668

    CAS  Google Scholar 

  43. Schwanstecher M (2011) Diabetes - perspectives in drug therapy. Handbook of experimental pharmacology: preface, vol 203. Springer

  44. McGuinness OP, Ejiofor J, Audoly LP, Schrom N (1998) Regulation of glucose production by NEFA and gluconeogenic precursors during chronic glucagon infusion. Am J Physiol Endocrinol Metab 275(3):432–439

    Article  Google Scholar 

  45. Yang T, Soodvilai S (2008) Renal and vascular mechanisms of thiazolidinedione-induced fluid retention. PPAR Res 2008:943614

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rupasinghe HPV, Sekhon-Loodu S, Mantso T, Panayiotidis MI (2016) Phytochemicals in regulating fatty acid β-oxidation: potential underlying mechanisms and their involvement in obesity and weight loss. Pharmacol Ther [Internet] 165:153–163. https://doi.org/10.1016/j.pharmthera.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  47. Singuru G, Pulipaka S, Shaikh A, Andugulapati SB, Thennati R, Kotamraju S (2023) Therapeutic efficacy of mitochondria-targeted esculetin in the improvement of NAFLD-NASH via modulating AMPK-SIRT1 axis. Int Immunopharmacol 124:111070. ISSN 1567-5769

    Article  CAS  PubMed  Google Scholar 

  48. Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P, Nicolau JC et al (2018) Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes [Internet]. J Am Coll Cardiol 71:2392–2401. https://doi.org/10.1016/j.jacc.2018.03.002. American College of Cardiology Foundation

    Article  CAS  PubMed  Google Scholar 

  49. Goldfine AB, Conlin PR, Halperin F, Koska J, Permana P, Schwenke D et al (2013) A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia 56(4):714–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Soehnlein O, Libby P (2021) Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat Rev Drug Discov [Internet] 20(8):589–610. https://doi.org/10.1038/s41573-021-00198-1

    Article  CAS  PubMed  Google Scholar 

  51. Chi C, Li DJ, Jiang YJ, Tong J, Fu H, Wu YH et al (2019) Vascular smooth muscle cell senescence and age-related diseases: state of the art. Biochim Biophys Acta Mol Basis Dis [Internet] 1865(7):1810–1821. https://doi.org/10.1016/j.bbadis.2018.08.015

    Article  CAS  PubMed  Google Scholar 

  52. Ting KK, Coleman P, Zhao Y, Vadas MA, Gamble JR (2021) The aging endothelium. Vasc Biol 3(1):R35–R47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Lakshma Nayak for FACS analysis, Dr. Madhusudana Kuncha for HbA1c levels, and Dr. Muralidharan K for providing animals and animal experimentation. Also, the authors sincerely acknowledge the late Dr. Surendar Reddy Bathula, who was instrumental in designing the process for the synthesis of Mito-Esc. He lost his battle for life due to COVID-19-related complications. We thank the Department of Knowledge and Information Management, CSIR-IICT, Hyderabad, India, for performing the plagiarism check of this manuscript (IICT/Pubs./2023/394).

Funding

This work was supported by internal funding to SK from the Council of Scientific and Industrial Research, India. Singuru G, Pulipaka S, Shaikh A, Sahoo S, and Jangam A acknowledge ICMR and CSIR, New Delhi, India, for the award of research fellowships.

Author information

Authors and Affiliations

Authors

Contributions

G.S. contributed to the experimental design, data analysis, and writing of the manuscript. S.P. contributed to the SA β-gal assay. A.S. contributed to the synthesis of Mito-Esc. S.S. contributed to the HAEC-monocyte adhesion assay. A.J. contributed to breeding animals. R.T. contributed to the technical and purity aspects of Mito-Esc synthesis. S.K. supervised the whole project, the provision of reagents, and other materials required for performing both in vitro and in vivo experiments, data analysis, and the writing of the manuscript.

Corresponding author

Correspondence to Srigiridhar Kotamraju.

Ethics declarations

Ethics approval and consent to participate

The mice study performed in this work was reviewed and approved by the Institutional Animal Ethical Committee (IICT/IAEC/52/2018) according to the guidelines formulated for the care and use of animals in scientific research (ICMR, India) at a Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA)-registered animal facility.

Conflict of interest

The authors declare the following competing financial interest(s): patents and patent applications describing Mito-Esc for its biological properties (with inventors S.G, P.S, A.S, R.T, and S.K) are assigned to CSIR.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1311 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singuru, G., Pulipaka, S., Shaikh, A. et al. Mitochondria targeted esculetin administration improves insulin resistance and hyperglycemia-induced atherosclerosis in db/db mice. J Mol Med (2024). https://doi.org/10.1007/s00109-024-02449-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00109-024-02449-1

Keywords

Navigation