Skip to main content
Log in

Ischemic stroke and diabetes: a TLR4-mediated neuroinflammatory perspective

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Ischemic stroke is the major contributor to morbidity and mortality in people with diabetes mellitus. In ischemic stroke patients, neuroinflammation is now understood to be one of the main underlying mechanisms for cerebral damage and recovery delay. It has been well-established that toll-like receptor 4 (TLR4) signaling pathway plays a key role in neuroinflammation. Emerging research over the last decade has revealed that, compared to ischemic stroke without diabetes mellitus, ischemic stroke with diabetes mellitus significantly upregulates TLR4-mediated neuroinflammation, increasing the risk of cerebral and neuronal damage as well as neurofunctional recovery delay. This review aims to discuss how ischemic stroke with diabetes mellitus amplifies TLR4-mediated neuroinflammation and its consequences. Additionally covered in this review is the potential application of TLR4 antagonists in the management of diabetic ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, Abbasifard M, Abbasi-Kangevari M, Abd-Allah F, Abedi V et al (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820. https://doi.org/10.1016/s1474-4422(21)00252-0

    Article  CAS  Google Scholar 

  2. Musuka TD, Wilton SB, Traboulsi M, Hill MD (2015) Diagnosis and management of acute ischemic stroke: speed is critical. CMAJ 187(12):887–893. https://doi.org/10.1503/cmaj.140355

    Article  PubMed  PubMed Central  Google Scholar 

  3. Simons LA, McCallum J, Friedlander Y, Simons J (1998) Risk factors for ischemic stroke. Stroke 29(7):1341–1346. https://doi.org/10.1161/01.STR.29.7.1341

    Article  CAS  PubMed  Google Scholar 

  4. Banerjee C, Chimowitz MI (2017) Stroke caused by atherosclerosis of the major intracranial arteries. Circ Res 120(3):502–513. https://doi.org/10.1161/circresaha.116.308441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mosenzon O, Cheng AYY, Rabinstein AA, Sacco S (2023) Diabetes and stroke: what are the connections? J Stroke 25(1):26–38. https://doi.org/10.5853/jos.2022.02306

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kruyt ND, Nys GM, van der Worp HB, van Zandvoort MJ, Kappelle LJ, Biessels GJ (2008) Hyperglycemia and cognitive outcome after ischemic stroke. J Neurol Sci 270(1–2):141–147. https://doi.org/10.1016/j.jns.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  7. Luitse MJ, Biessels GJ, Rutten GE, Kappelle LJ (2012) Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol 11(3):261–271. https://doi.org/10.1016/s1474-4422(12)70005-4

    Article  PubMed  Google Scholar 

  8. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T et al (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359(13):1317–1329. https://doi.org/10.1056/NEJMoa0804656

    Article  CAS  PubMed  Google Scholar 

  9. Huang H, Oo TT, Apaijai N, Chattipakorn N, Chattipakorn SC (2023) An updated review of mitochondrial transplantation as a potential therapeutic strategy against cerebral ischemia and cerebral ischemia/reperfusion injury. Mol Neurobiol 60(4):1865–1883. https://doi.org/10.1007/s12035-022-03200-y

    Article  CAS  PubMed  Google Scholar 

  10. Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. The lancet 371(9624):1612–1623. https://doi.org/10.1016/S0140-6736(08)60694-7

    Article  CAS  Google Scholar 

  11. Berlis A, Lutsep H, Barnwell S, Norbash A, Wechsler L, Jungreis CA, Woolfenden A, Redekop G, Hartmann M, Schumacher M (2004) Mechanical thrombolysis in acute ischemic stroke with endovascular photoacoustic recanalization. Stroke 35(5):1112–1116. https://doi.org/10.1161/01.STR.0000124126.17508.d3

    Article  PubMed  Google Scholar 

  12. Ye X, Chopp M, Liu X, Zacharek A, Cui X, Yan T, Roberts C, Chen J (2011) Niaspan reduces high-mobility group box 1/receptor for advanced glycation endproducts after stroke in type-1 diabetic rats. Neuroscience 190:339–345. https://doi.org/10.1016/j.neuroscience.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  13. Ning R, Chopp M, Zacharek A, Yan T, Zhang C, Roberts C, Lu M, Chen J (2014) Neamine induces neuroprotection after acute ischemic stroke in type one diabetic rats. Neuroscience 257:76–85. https://doi.org/10.1016/j.neuroscience.2013.10.071

    Article  CAS  PubMed  Google Scholar 

  14. Venkat P, Yan T, Chopp M, Zacharek A, Ning R, Van Slyke P, Dumont D, Landschoot-Ward J, Liang L, Chen J (2018) Angiopoietin-1 mimetic peptide promotes neuroprotection after stroke in type 1 diabetic rats. Cell Transplant 27(12):1744–1752. https://doi.org/10.1177/0963689718791568

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW (2014) Pattern recognition receptors and central nervous system repair. Exp Neurol 258:5–16. https://doi.org/10.1016/j.expneurol.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oo TT, Sumneang N, Ongnok B, Arunsak B, Chunchai T, Kerdphoo S, Apaijai N, Pratchayasakul W, Liang G, Chattipakorn N et al (2022) L6H21 protects against cognitive impairment and brain pathologies via toll-like receptor 4-myeloid differentiation factor 2 signalling in prediabetic rats. Br J Pharmacol 179(6):1220–1236. https://doi.org/10.1111/bph.15741

    Article  CAS  PubMed  Google Scholar 

  17. Huang NQ, Jin H, Zhou SY, Shi JS, Jin F (2017) TLR4 is a link between diabetes and Alzheimer’s disease. Behav Brain Res 316:234–244. https://doi.org/10.1016/j.bbr.2016.08.047

    Article  CAS  PubMed  Google Scholar 

  18. Abdul Y, Abdelsaid M, Li W, Webb RC, Sullivan JC, Dong G, Ergul A (2019) Inhibition of Toll-Like Receptor-4 (TLR-4) Improves neurobehavioral outcomes after acute ischemic stroke in diabetic rats: possible role of vascular endothelial TLR-4. Mol Neurobiol 56(3):1607–1617. https://doi.org/10.1007/s12035-018-1184-8

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Yao N, Zhang T, Guo F, Niu X, Wu Z, Hou S (2020) Ability of post-treatment glycyrrhizic acid to mitigate cerebral ischemia/reperfusion injury in diabetic mice. Med Sci Monit 26:e926551. https://doi.org/10.12659/MSM.926551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2022) Emerging roles of toll-like receptor 4 in chemotherapy-induced neurotoxicity. Neurotoxicology 93:112–127. https://doi.org/10.1016/j.neuro.2022.09.006

    Article  CAS  PubMed  Google Scholar 

  21. Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2020) Potential roles of myeloid differentiation factor 2 on neuroinflammation and its possible interventions. Mol Neurobiol 57(11):4825–4844. https://doi.org/10.1007/s12035-020-02066-2

    Article  CAS  PubMed  Google Scholar 

  22. Lee K-M, Seong S-Y (2009) Partial role of TLR4 as a receptor responding to damage-associated molecular pattern. Immunol Lett 125(1):31–39. https://doi.org/10.1016/j.imlet.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  23. Pandey GN, Rizavi HS, Bhaumik R, Ren X (2019) Innate immunity in the postmortem brain of depressed and suicide subjects: role of toll-like receptors. Brain Behav Immun 75:101–111. https://doi.org/10.1016/j.bbi.2018.09.024

    Article  CAS  PubMed  Google Scholar 

  24. Committee ADAPP (2021) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care 45(Supplement_1):S17–S38. https://doi.org/10.2337/dc22-S002

    Article  Google Scholar 

  25. Sinclair A, Saeedi P, Kaundal A, Karuranga S, Malanda B, Williams R (2020) Diabetes and global ageing among 65–99-year-old adults: findings from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 162:108078. https://doi.org/10.1016/j.diabres.2020.108078

    Article  PubMed  Google Scholar 

  26. American Diabetes Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl 1):S62–67. https://doi.org/10.2337/dc09-S062

    Article  PubMed Central  Google Scholar 

  27. Chen L, Magliano DJ, Zimmet PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives. Nat Rev Endocrinol 8(4):228–236. https://doi.org/10.1038/nrendo.2011.183

    Article  CAS  PubMed  Google Scholar 

  28. Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373(9680):2027–2033. https://doi.org/10.1016/s0140-6736(09)60568-7

    Article  PubMed  Google Scholar 

  29. Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Å (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3(1):17016. https://doi.org/10.1038/nrdp.2017.16

    Article  PubMed  Google Scholar 

  30. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI et al (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1(1):15019. https://doi.org/10.1038/nrdp.2015.19

    Article  PubMed  Google Scholar 

  31. Maida CD, Daidone M, Pacinella G, Norrito RL, Pinto A, Tuttolomondo A (2022) Diabetes and Ischemic Stroke: An Old and New Relationship an Overview of the Close Interaction between These Diseases. Int J Mol Sci 23(4):2397. https://doi.org/10.3390/ijms23042397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222. https://doi.org/10.1016/s0140-6736(10)60484-9

    Article  CAS  PubMed  Google Scholar 

  33. Karapanayiotides T, Piechowski-Jozwiak B, van Melle G, Bogousslavsky J, Devuyst G (2004) Stroke patterns, etiology, and prognosis in patients with diabetes mellitus. Neurology 62(9):1558–1562. https://doi.org/10.1212/01.wnl.0000123252.55688.05

    Article  PubMed  Google Scholar 

  34. Cui R, Iso H, Yamagishi K, Saito I, Kokubo Y, Inoue M, Tsugane S (2011) Diabetes mellitus and risk of stroke and its subtypes among Japanese: the Japan public health center study. Stroke 42(9):2611–2614. https://doi.org/10.1161/strokeaha.111.614313

    Article  PubMed  Google Scholar 

  35. Wang L, Wang J, Fang J, Zhou H, Liu X, Su SB (2015) High glucose induces and activates Toll-like receptor 4 in endothelial cells of diabetic retinopathy. Diabetol Metab Syndr 7(1):89. https://doi.org/10.1186/s13098-015-0086-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawamoto EM, Cutler RG, Rothman SM, Mattson MP, Camandola S (2014) TLR4-dependent metabolic changes are associated with cognitive impairment in an animal model of type 1 diabetes. Biochem Biophys Res Commun 443(2):731–737. https://doi.org/10.1016/j.bbrc.2013.12.039

    Article  CAS  PubMed  Google Scholar 

  37. Rohm TV, Meier DT, Olefsky JM, Donath MY (2022) Inflammation in obesity, diabetes, and related disorders. Immunity 55(1):31–55. https://doi.org/10.1016/j.immuni.2021.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carrillo-Sepulveda MA, Spitler K, Pandey D, Berkowitz DE, Matsumoto T (2015) Inhibition of TLR4 attenuates vascular dysfunction and oxidative stress in diabetic rats. J Mol Med 93(12):1341–1354. https://doi.org/10.1007/s00109-015-1318-7

    Article  CAS  PubMed  Google Scholar 

  39. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188. https://doi.org/10.1152/physrev.00045.2011

    Article  CAS  PubMed  Google Scholar 

  40. Feske SK (2021) Ischemic stroke. Am J Med 134(12):1457–1464. https://doi.org/10.1016/j.amjmed.2021.07.027

    Article  PubMed  Google Scholar 

  41. Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7(1):97. https://doi.org/10.1186/1479-5876-7-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ning R, Chopp M, Yan T, Zacharek A, Zhang C, Roberts C, Cui X, Lu M, Chen J (2012) Tissue plasminogen activator treatment of stroke in type-1 diabetes rats. Neuroscience 222:326–332. https://doi.org/10.1016/j.neuroscience.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  43. Kurita N, Yamashiro K, Kuroki T, Tanaka R, Urabe T, Ueno Y, Miyamoto N, Takanashi M, Shimura H, Inaba T et al (2020) Metabolic endotoxemia promotes neuroinflammation after focal cerebral ischemia. J Cereb Blood Flow Metab 40(12):2505–2520. https://doi.org/10.1177/0271678X19899577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang YJ, Guo WJ, Tang ZY, Lin HB, Hong P, Wang JW, Huang XX, Li FX, Xu SY, Zhang HF (2022) Isoflurane attenuates cerebral ischaemia-reperfusion injury via the TLR4-NLRP3 Signalling Pathway in Diabetic Mice. Oxid Med Cell Longev 2022:2650693. https://doi.org/10.1155/2022/2650693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang WC, Li TT, Wan Q, Zhang X, Sun LY, Zhang YR, Lai PC, Li WZ (2022) Molecular hydrogen mediates neurorestorative effects after stroke in diabetic rats: the TLR4/NF-kappaB inflammatory pathway. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-022-10051-w

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16(1):142. https://doi.org/10.1186/s12974-019-1516-2

    Article  PubMed  PubMed Central  Google Scholar 

  47. Krishnan A, Lopes RD, Alexander JH, Becker RC, Goldstein LB (2010) Antithrombotic therapy for ischemic stroke: guidelines translated for the clinician. J Thromb Thrombolysis 29(3):368–377. https://doi.org/10.1007/s11239-010-0439-7

    Article  PubMed  Google Scholar 

  48. Hurford R, Sekhar A, Hughes TAT, Muir KW (2020) Diagnosis and management of acute ischaemic stroke. Pract Neurol 20(4):304–316. https://doi.org/10.1136/practneurol-2020-002557

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion–from mechanism to translation. Nat Med 17(11):1391–1401. https://doi.org/10.1038/nm.2507

    Article  CAS  PubMed  Google Scholar 

  50. Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR (2017) Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation 14(1):21. https://doi.org/10.1186/s12974-016-0774-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim D, Choi I-Y, Jang H, Lee S-H (2013) HMGB1 suppression confers neuroprotection against stroke in diabetic rats. Transl Neurosci 4(4):477–483. https://doi.org/10.2478/s13380-013-0145-y

    Article  Google Scholar 

  52. Kim JM, Lee JE, Cheon SY, Lee JH, Kim SY, Kam EH, Koo BN (2016) The anti-inflammatory effects of agmatine on transient focal cerebral ischemia in diabetic rats. J Neurosurg Anesthesiol 28(3):203–213. https://doi.org/10.1097/ana.0000000000000195

    Article  PubMed  Google Scholar 

  53. Goldstein RS, Gallowitsch-Puerta M, Yang L, Rosas-Ballina M, Huston JM, Czura CJ, Lee DC, Ward MF, Bruchfeld AN, Wang H et al (2006) Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 25(6):571–574. https://doi.org/10.1097/01.shk.0000209540.99176.72

    Article  CAS  PubMed  Google Scholar 

  54. Kim SW, Lee H, Lee HK, Kim ID, Lee JK (2019) Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol Commun 7(1):94. https://doi.org/10.1186/s40478-019-0747-x

    Article  CAS  PubMed  Google Scholar 

  55. Zhu S, Tang S, Su F (2018) Dioscin inhibits ischemic stroke-induced inflammation through inhibition of the TLR4/MyD88/NF-κB signaling pathway in a rat model. Mol Med Rep 17(1):660–666. https://doi.org/10.3892/mmr.2017.7900

    Article  CAS  PubMed  Google Scholar 

  56. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM (2014) Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev 2014:102158. https://doi.org/10.1155/2014/102158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. Febs j 276(1):13–26. https://doi.org/10.1111/j.1742-4658.2008.06766.x

    Article  CAS  PubMed  Google Scholar 

  58. Kriz J (2006) Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol 18(1–2):145–157. https://doi.org/10.1615/critrevneurobiol.v18.i1-2.150

    Article  CAS  PubMed  Google Scholar 

  59. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183(1):25–33. https://doi.org/10.1016/s0014-4886(03)00082-7

    Article  PubMed  Google Scholar 

  60. Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, Shimada T, Mizuno Y, Urabe T (2003) Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117(3):531–539. https://doi.org/10.1016/s0306-4522(02)00954-5

    Article  CAS  PubMed  Google Scholar 

  61. Price CJ, Menon DK, Peters AM, Ballinger JR, Barber RW, Balan KK, Lynch A, Xuereb JH, Fryer T, Guadagno JV et al (2004) Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke 35(7):1659–1664. https://doi.org/10.1161/01.Str.0000130592.71028.92

    Article  CAS  PubMed  Google Scholar 

  62. Buck BH, Liebeskind DS, Saver JL, Bang OY, Yun SW, Starkman S, Ali LK, Kim D, Villablanca JP, Salamon N et al (2008) Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke 39(2):355–360. https://doi.org/10.1161/strokeaha.107.490128

    Article  PubMed  Google Scholar 

  63. Yilmaz G, Granger DN (2008) Cell adhesion molecules and ischemic stroke. Neurol Res 30(8):783–793. https://doi.org/10.1179/174313208x341085

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang Y, Rosenberg GA (2015) Matrix metalloproteinases as therapeutic targets for stroke. Brain Res 1623:30–38. https://doi.org/10.1016/j.brainres.2015.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Y, Zhu Z-Y, Huang T-T, Zhou Y-X, Wang X, Yang L-Q, Chen Z-A, Yu W-F, Li P-Y (2018) The peripheral immune response after stroke—a double edge sword for blood-brain barrier integrity. CNS Neurosci Ther 24(12):1115–1128. https://doi.org/10.1111/cns.13081

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lee YB, Park JH, Kim E, Kang CK, Park HM (2014) Arterial stiffness and functional outcome in acute ischemic stroke. J Cerebrovasc Endovasc Neurosurg 16(1):11–19. https://doi.org/10.7461/jcen.2014.16.1.11

    Article  PubMed  PubMed Central  Google Scholar 

  67. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM (2009) Toll-like receptors in ischemia-reperfusion injury. Shock 32(1):4–16. https://doi.org/10.1097/SHK.0b013e318193e333

    Article  CAS  PubMed  Google Scholar 

  68. Li M, Liu J, Bi Y, Chen J, Zhao L (2018) Potential medications or compounds acting on toll-like receptors in cerebral ischemia. Curr Neuropharmacol 16(2):160–175. https://doi.org/10.2174/1570159x15666170601125139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brea D, Blanco M, Ramos-Cabrer P, Moldes O, Arias S, Pérez-Mato M, Leira R, Sobrino T, Castillo J (2011) Toll-like receptors 2 and 4 in ischemic stroke: outcome and therapeutic values. J Cereb Blood Flow Metab 31(6):1424–1431. https://doi.org/10.1038/jcbfm.2010.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kilic U, Kilic E, Matter CM, Bassetti CL, Hermann DM (2008) TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis 31(1):33–40. https://doi.org/10.1016/j.nbd.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  71. Hua F, Tang H, Wang J, Prunty MC, Hua X, Sayeed I, Stein DG (2015) TAK-242, an antagonist for Toll-like receptor 4, protects against acute cerebral ischemia/reperfusion injury in mice. J Cereb Blood Flow Metab 35(4):536–542. https://doi.org/10.1038/jcbfm.2014.240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Parada E, Casas AI, Palomino-Antolin A, Gómez-Rangel V, Rubio-Navarro A, Farré-Alins V, Narros-Fernandez P, Guerrero-Hue M, Moreno JA, Rosa JM et al (2019) Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models. Br J Pharmacol 176(15):2764–2779. https://doi.org/10.1111/bph.14703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li C, Che LH, Ji TF, Shi L, Yu JL (2017) Effects of the TLR4 signaling pathway on apoptosis of neuronal cells in diabetes mellitus complicated with cerebral infarction in a rat model. Sci Rep 7:43834. https://doi.org/10.1038/srep43834

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Thura Tun Oo conceptualizes, writes, edits, and finalizes the whole manuscript.

Corresponding author

Correspondence to Thura Tun Oo.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oo, T.T. Ischemic stroke and diabetes: a TLR4-mediated neuroinflammatory perspective. J Mol Med (2024). https://doi.org/10.1007/s00109-024-02441-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00109-024-02441-9

Keywords

Navigation