Skip to main content

Advertisement

Log in

An Hsp70 promoter–based mouse for heat shock–induced gene modulation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Physical therapy is extensively employed in clinical settings. Nevertheless, the absence of suitable animal models has resulted in an incomplete understanding of the in vivo mechanisms and cellular distribution that respond to physical stimuli. The objective of this research was to create a mouse model capable of indicating the cells affected by physical stimuli. In this study, we successfully established a mouse line based on the heat shock protein 70 (Hsp70) promoter, wherein the expression of CreERT2 can be induced by physical stimuli. Following stimulation of the mouse tail, ear, or cultured calvarias with heat shock (generated by heating, ultrasound, or laser), a distinct Cre-mediated excision was observed in cells stimulated by these physical factors with minimal occurrence of leaky reporter expression. The application of heat shock to Hsp70-CreERT2; FGFR2-P253R double transgenic mice or Hsp70-CreERT2 mice infected with AAV-BMP4 at calvarias induced the activation of Cre-dependent mutant FGFR2-P253R or BMP4 respectively, thereby facilitating the premature closure of cranial sutures or the repair of calvarial defects. This novel mouse line holds significant potential for investigating the underlying mechanisms of physical therapy, tissue repair and regeneration, lineage tracing, and targeted modulation of gene expression of cells in local tissue stimulated by physical factor at the interested time points.

Key messages

  • In the study, an Hsp70-CreERT2 transgenic mouse was generated for heat shock-induced gene modulation.

  • Heat shock, ultrasound, and laser stimulation effectively activated Cre expression in Hsp70-CreERT2; reporter mice, which leads to deletion of floxed DNA sequence in the tail, ear, and cultured calvaria tissues of mice.

  • Local laser stimuli on cultured calvarias effectively induce Fgfr2-P253R expression in Hsp70-mTmG-Fgfr2-P253R mice and result in accelerated premature closure of cranial suture.

  • Heat shock activated AAV9-FLEX-BMP4 expression and subsequently promoted the repair of calvarial defect of Hsp70-CreERT2; Rosa26-mTmG mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included either in this article or in the additional files.

Abbreviations

LIPUS:

Low-intensity pulsed ultrasound

AAV:

Adeno-associated virus

FGFR2:

Fibroblast growth factor receptor type 2

RUNX2:

Runt-related transcription factor 2

BMP4:

Bone morphogenetic protein

OC:

Osteocalcin

OSX:

Osterix

References

  1. Pichon X, Lagha M, Mueller F, Bertrand E (2018) A growing toolbox to image gene expression in single cells: sensitive approaches for demanding challenges. Mol Cell 71:468–480. https://doi.org/10.1016/j.molcel.2018.07.022

    Article  CAS  PubMed  Google Scholar 

  2. Zhuo C, Zhang J, Lee JH, Jiao J, Cheng D, Liu L, Kim HW, Tao Y, Li M (2021) Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct Target Ther 6:238. https://doi.org/10.1038/s41392-021-00645-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rathnam C, Chueng SD, Yang L, Lee KB (2017) Advanced gene manipulation methods for stem cell theranostics. Theranostics 7:2775–2793. https://doi.org/10.7150/thno.19443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim H, Kim M, Im SK, Fang S (2018) Mouse Cre-LoxP system : general principles to determine tissue-specific roles of target genes. Lab Anim Res 34:147–159. https://doi.org/10.5625/lar.2018.34.4.147

    Article  PubMed  PubMed Central  Google Scholar 

  5. Du X, Zhu Y, Luo F, Chen L (2012) Localized all-cell knock-out (LACKO) strategy is needed for studying adult stage diseases. Transgenic Res 21:1159–1162. https://doi.org/10.1007/s11248-012-9622-2

    Article  CAS  PubMed  Google Scholar 

  6. Kavaliauskaitė J, Kazlauskaitė A, Lazutka JR, Mozolevskis G, Stirkė A (2022) Pulsed electric fields alter expression of NF-κB promoter-controlled gene. Int J Mol Sci 23:451. https://doi.org/10.3390/ijms23010451

    Article  CAS  Google Scholar 

  7. Vekris A, Maurange C, Moonen C, Mazurier F, De Verneuil H, Canioni P, Voisin P (2000) Control of transgene expression using local hyperthermia in combination with a heat-sensitive promoter. J Gene Med 2:89–96. https://doi.org/10.1002/(SICI)1521-2254(200003/04)2:2%3c89::AID-JGM90%3e3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  8. Chowdhary S, Kainth AS, Gross DS (2017) Heat shock protein genes undergo dynamic alteration in their three-dimensional structure and genome organization in response to thermal stress. Mol Cell Bio 37:e00292–e217. https://doi.org/10.1128/MCB.00292-17

    Article  CAS  Google Scholar 

  9. Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9:266–269. https://doi.org/10.1038/nmeth.1892

    Article  CAS  PubMed  Google Scholar 

  10. Kasatkina LA, Ma C, Matlashov ME, Vu T, Li M, Kaberniuk AA, Yao J, Verkhusha VV (2022) Optogenetic manipulation and photoacoustic imaging using a near-infrared transgenic mouse model. Nat Commun 13:2813. https://doi.org/10.1038/s41467-022-30547-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu J, Wang M, Yang X, Yi C, Jiang J, Yu Y, Ye H (2020) A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice. Nat Commun 11:3708. https://doi.org/10.1038/s41467-020-17530-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Placinta M, Shen MC, Achermann M, Karlstrom RO (2009) A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish. BMC Dev Biol 9:73. https://doi.org/10.1186/1471-213X-9-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amann PM, Marquardt Y, Steiner T, Hölzle F, Skazik-Voogt C, Heise R, Baron JM (2016) Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models. Lasers Med Sci 31:397–404. https://doi.org/10.1007/s10103-015-1863-x

    Article  PubMed  Google Scholar 

  14. Xu J, Zhu L, He S, Wu Y, Jin W, Yu T, Qu JY, Wen Z (2015) Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish. Dev Cell 34:632–641. https://doi.org/10.1016/j.devcel.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  15. Deckers R, Quesson B, Arsaut J, Eimer S, Couillaud F, Moonen CT (2009) Image-guided, noninvasive, spatiotemporal control of gene expression. Proc Nat Acad Sci U S A 106:1175–1180. https://doi.org/10.1073/pnas.0806936106

    Article  Google Scholar 

  16. Kagiya G, Ogawa R, Ito S, Fukuda S, Hatashita M, Tanaka Y, Yamamoto K, Kondo T (2009) Identification of a cis-acting element responsive to ultrasound in the 5′-flanking region of the human heme oxygenase-1 gene. Ultrasound Med Biol 35:155–164. https://doi.org/10.1016/j.ultrasmedbio.2008.07.012

    Article  PubMed  Google Scholar 

  17. Ogawa R, Morii A, Watanabe A, Cui ZG, Kagiya G, Kondo T, Doi N, Feril LB Jr (2013) Regulation of gene expression in human prostate cancer cells with artificially constructed promoters that are activated in response to ultrasound stimulation. Ultrason Sonochem 20:460–467. https://doi.org/10.1016/j.ultsonch.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  18. Duque M, Lee-Kubli CA, Tufail Y, Magaram U, Patel J, Chakraborty A, Mendoza Lopez J, Edsinger E, Vasan A, Shiao R et al (2022) Sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels. Nat Commun 13:600. https://doi.org/10.1038/s41467-022-28205-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stanley SA, Kelly L, Latcha KN, Schmidt SF, Yu X, Nectow AR, Sauer J, Dyke JP, Dordick JS, Friedman JM (2016) Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 531:647–650. https://doi.org/10.1038/nature17183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Halloran MC, Sato-Maeda M, Warren J, Su F, Lele Z, Krone PH, Kuwada JY, Shoji W (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127:1953–1960. https://doi.org/10.1242/dev.127.9.1953

    Article  CAS  PubMed  Google Scholar 

  21. Wu S, Nguyen LTM, Pan H, Hassan S, Dai Y, Xu J, Wen Z (2020) Two phenotypically and functionally distinct microglial populations in adult zebrafish. Sci Adv 6:eabd1160. https://doi.org/10.1126/sciadv.abd1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890. https://doi.org/10.1073/pnas.93.20.10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hans S, Freudenreich D, Geffarth M, Kaslin J, Machate A, Brand M (2011) Generation of a non-leaky heat shock-inducible Cre line for conditional Cre/Lox strategies in zebrafish. Dev Dyn 240:108–115. https://doi.org/10.1002/dvdy.22497

    Article  CAS  PubMed  Google Scholar 

  24. Dietrich P, Dragatsis I, Xuan S, Zeitlin S, Efstratiadis A (2000) Conditional mutagenesis in mice with heat shock promoter-driven cre transgenes. Mamm Genome 11:196–205. https://doi.org/10.1007/s003350010037

    Article  CAS  PubMed  Google Scholar 

  25. Hans S, Kaslin J, Freudenreich D, Brand M (2009) Temporally-controlled site-specific recombination in zebrafish. PLoS ONE 4:e4640. https://doi.org/10.1371/journal.pone.0004640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stanley SA, Gagner JE, Shadi D, Mitsukuni Y, Dordick JS, Friedman JM (2012) Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–608. https://doi.org/10.1126/science.1216753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486. https://doi.org/10.1016/0022-2836(81)90375-2

    Article  CAS  PubMed  Google Scholar 

  28. Feil S, Valtcheva N, Feil R (2009) Inducible cre mice. In: Kühn R, Wurst W (eds) Gene Knockout Protocols, 2nd edn. Humana Totowa, NJ, pp 343–363. https://doi.org/10.1007/978-1-59745-471-1

    Chapter  Google Scholar 

  29. Korecki AJ, Hickmott JW, Lam SL, Dreolini L, Mathelier A, Baker O, Kuehne C, Bonaguro RJ, Smith J, Tan CV et al (2019) Twenty-seven tamoxifen-inducible iCre-driver mouse strains for eye and brain, including seventeen carrying a new inducible-first constitutive-ready allele. Genetics 211:1155–1177. https://doi.org/10.1534/genetics.119.301984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hunt C, Calderwood S (1990) Characterization and sequence of a mouse hsp70 gene and its expression in mouse cell lines. Gene 87:199–204. https://doi.org/10.1016/0378-1119(90)90302-8

    Article  CAS  PubMed  Google Scholar 

  31. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71. https://doi.org/10.1038/5007

    Article  CAS  PubMed  Google Scholar 

  32. Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030. https://doi.org/10.1523/JNEUROSCI.1954-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McLellan MA, Rosenthal NA, Pinto AR (2017) Cre-loxP-mediated recombination: general principles and experimental considerations. Curr Protoc Mouse Biol 7:1–12. https://doi.org/10.1002/cpmo.22

    Article  PubMed  Google Scholar 

  34. Li L, Jin H, Xu J, Shi Y, Wen Z (2011) Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood 117:1359–1369. https://doi.org/10.1182/blood-2010-06-290700

    Article  CAS  PubMed  Google Scholar 

  35. Yan B, Han P, Pan L, Lu W, Xiong J, Zhang M, Zhang W, Li L, Wen Z (2014) Il-1β and reactive oxygen species differentially regulate neutrophil directional migration and basal random motility in a zebrafish injury–induced inflammation model. J Immunol 192:5998–6008. https://doi.org/10.4049/jimmunol.1301645

    Article  CAS  PubMed  Google Scholar 

  36. O’Connell-Rodwell CE, Mackanos MA, Simanovskii D, Cao YA, Bachmann MH, Schwettman HA, Contag CH (2008) In vivo analysis of heat-shock-protein-70 induction following pulsed laser irradiation in a transgenic reporter mouse. J Biomed Opt biomedical optics 13:030501. https://doi.org/10.1117/1.2904665

    Article  CAS  PubMed  Google Scholar 

  37. O’connell-Rodwell CE, Shriver D, Simanovskii DM, Mcclure C, Cao YA, Zhang W, Bachmann MH, Beckham JT, Jansen ED, Palanker D et al (2004) A genetic reporter of thermal stress defines physiologic zones over a defined temperature range. FASEB J 18:264–271. https://doi.org/10.1096/fj.03-0585com

    Article  CAS  PubMed  Google Scholar 

  38. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605. https://doi.org/10.1002/dvg.20335

    Article  CAS  PubMed  Google Scholar 

  39. Yin L, Du X, Li C, Xu X, Chen Z, Su N, Zhao L, Qi H, Li F, Xue J et al (2008) A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone 42:631–643. https://doi.org/10.1016/j.bone.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  40. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757. https://doi.org/10.1006/bbrc.1997.7124

    Article  CAS  PubMed  Google Scholar 

  41. Luo F, Xie Y, Xu W, Huang J, Zhou S, Wang Z, Luo X, Liu M, Chen L, Du X (2017) Deformed skull morphology is caused by the combined effects of the maldevelopment of calvarias, cranial base and brain in FGFR2-P253R mice mimicking human Apert syndrome. Int J Biol Sci 13:32–45. https://doi.org/10.7150/ijbs.16287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luo F, Xie Y, Wang Z, Huang J, Tan Q, Sun X, Li F, Li C, Liu M, Zhang D et al (2018) Adeno-associated virus-mediated RNAi against mutant alleles attenuates abnormal calvarial phenotypes in an Apert syndrome mouse model. Mol Ther Nucleic Acids 13:291–302. https://doi.org/10.1016/j.omtn.2018.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie Y, Su N, Jin M, Qi H, Yang J, Li C, Du X, Luo F, Chen B, Shen Y et al (2012) Intermittent PTH (1–34) injection rescues the retarded skeletal development and postnatal lethality of mice mimicking human achondroplasia and thanatophoric dysplasia. Hum Mol Genet 21:3941–3955. https://doi.org/10.1093/hmg/dds181

    Article  CAS  PubMed  Google Scholar 

  44. Kuang L, Wu J, Su N, Qi H, Chen H, Zhou S, Xiong Y, Du X, Tan Q, Yang J et al (2020) FGFR3 deficiency enhances CXCL12-dependent chemotaxis of macrophages via upregulating CXCR7 and aggravates joint destruction in mice. Ann Rheum Dis 79:112–122. https://doi.org/10.1136/annrheumdis-2019-215696

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

National Key Research and Development Program of China, 2018YFA0800802, Lin Chen, National Natural Science Foundation of China, 92168121, Fengtao Luo,82161160313, Lin Chen, 82122044, Yangli Xie, Chongqing Natural Science Foundation, cstc2020jcyj-msxmX0112, Fengtao Luo, CSTB2022NSCQ-MSX0936, Min Jin.

Author information

Authors and Affiliations

Authors

Contributions

Study design: F.L., Y.X., and L.C.; study conduct: H.C., M.Z., J.H., R.Z., H.C., Q.N., C.L., N.S., S.L., and W.J; data collection: M.J. K.L., J.Y., Q.T., X.L., and S.H.; data analysis and interpretation: F.L, Y.X., H.Q., X.X., C.D., and X.D.; drafting the manuscript: H.C., F. L, Y.X., and L.C. All the authors read and approved the final paper.

Corresponding authors

Correspondence to Lin Chen or Fengtao Luo.

Ethics declarations

Ethics approval and consent to participate

Animal experiments were approved by the Institutional Animal Care and Use Committee of Daping Hospital (Chongqing, China).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4134 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xie, Y., Zhang, M. et al. An Hsp70 promoter–based mouse for heat shock–induced gene modulation. J Mol Med 102, 693–707 (2024). https://doi.org/10.1007/s00109-024-02433-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-024-02433-9

Keywords

Navigation