Skip to main content

Advertisement

Log in

The crosstalk between ubiquitination and endocrine therapy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Endocrine therapy (ET), also known as hormone therapy, refers to the treatment of tumors by regulating and changing the endocrine environment and hormone levels. Its related mechanism is mainly through reducing hormone levels and blocking the binding of hormones to corresponding receptors, thus blocking the signal transduction pathway to stimulate tumor growth. However, with the application of ET, some patients show resistance to ET, which is attributed to abnormal accumulation of hormone receptors (HRs) and the production of multiple mutants of HRs. The targeted degradation of abnormal accumulation protein mediated by ubiquitination is an important approach that regulates the protein level and function of intracellular proteins in eukaryotes. Here, we provide a brief description of the traditional and novel drugs available for ET in this review. Then, we introduce the link between ubiquitination and ET. In the end, we elaborate the clinical application of ET combined with ubiquitination-related molecules.

Key messages

• A brief description of the traditional and novel drugs available for endocrine therapy (ET).

• The link between ubiquitination and ET.

• The clinical application of ET combined with ubiquitination-related molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

ADT:

Androgen deprivation therapy

AI:

Aromatase inhibitor

AIL:

Ailanthone

AMBRA1:

Autophagy and beclin 1 regulator 1

AMFR:

Autocrine mobility factor receptor

AR:

Androgen receptor

AR-Vs:

AR splicing variants

ATA:

Acetyltanshinone IIA

BA:

Betulinic acid

BAG6:

BCL2-associated athanogene cochaperone 6

BC:

Breast cancer

BCNU:

1,3-BIS (2-chloroethyl)-1-nitrosourea

BETP:

Bromodomain extraterminal protein

CBL:

Casitas B-lineage lymphoma

CDK:

Cyclin-dependent kinase

CHIP:

Carboxyl terminus of Hsc70-interacting protein

CK:

Cytokeratin

COPS5:

COP9 complex-associated isopeptidase

CRC:

Colorectal carcinoma

CRPC:

Castration-resistant prostate cancer

CSN:

COP9 signalosome

CUEDC2:

CUE domain containing 2

Cx43:

Connexin 43

CYP17:

Cytochrome P450c17

DFS:

Disease-free survival

DUB:

De-ubiquitination enzyme

E1:

Ubiquitin-activating enzyme

E2:

Ubiquitin-conjugation enzyme

E3:

Ubiquitin ligase

EC:

Endometrial cancer

Efp:

Estrogen-responsive finger protein

EGCG:

Baicalein and epigallocatechin-3-gallate

ER:

Estrogen receptor

ET:

Endocrine therapy

FASN:

Fatty acid synthetase

FDA:

Food and Drug Administration

FKBPL:

FK506-binding protein like

FSH:

Follicle-stimulating hormone

GET4:

General transcription factor group E4

GnRHa:

Gonadotropin-releasing hormone agonist

GR:

Glucocorticoid receptor

HCC:

Hepatocellular carcinoma

HOIL-1:

Heme-oxidized IRP2 ubiquitin ligase-1

HR:

Hormone receptor

HSP70:

Heat shock protein 70

IRF8:

Interferon regulatory factor 8

KLF4:

Kruppel-like factor 4

KLF5:

Kruppel-like zinc finger transcription factor 5

LH:

Luteinizing hormone

LMB:

Leptomycin B

LNX1:

Ligand-of-Numb protein X1

L-THP:

L-Tetrahydropalmatine

NLS:

Nuclear localization sequence

OFS:

Ovarian function inhibitor

OS:

Overall survival

PCa:

Prostate cancer

PFKFB3 :

6-Phosphate fructose 2-kinase/fructose 2,6-bisphosphatase-3

PFS:

Progression-free survival

PP1:

Protein phosphatase-1

PR:

Progesterone receptor

PROTAC:

Proteolysis targeting chimera

PSA:

Prostate-specific antigen

RB:

Retinoblastoma tumor suppressor gene products

RCC:

Renal cell carcinoma

SAT:

Second-line antiandrogen therapy

SERD:

Selective estrogen receptor degrader

SERM:

Selective estrogen receptor modulator

Siah2:

Seven in Absentia Homolog 2

TC:

Thyroid cancer

TRIM:

Tripartite motif

TSA:

Trichostatin A

TSH:

Thyroid-stimulating hormone

TTF:

Time to tumor failure

TTP:

Time to tumor progression

Type I:

Estrogen-dependent EC

Type II:

Non-estrogen-dependent EC

UPS:

Ubiquitin-proteasome system

USP7:

Ubiquitin-specific protease 7

WWP1:

WW domain containing E3 ubiquitin protein ligase 1

β-TrCP:

β-Transducin repeat-containing proteins

11β-HSD2:

11β-Hydroxysteroid dehydrogenase-2

3βHSD1:

3β Hydroxy steroid dehydrogenase 1

References

  1. Zhang H, Chen J (2018) Current status and future directions of cancer immunotherapy. J Cancer 9:1773–1781. https://doi.org/10.7150/jca.24577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu J, Wang S, Zhang Y, Fan HT, Lin HS (2015) Traditional Chinese medicine and cancer: history, present situation, and development. Thoracic cancer 6:561–569. https://doi.org/10.1111/1759-7714.12270

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen J, Bu Z, Ji J (2021) Surgical treatment of gastric cancer: current status and future directions. Chin J Cancer Res 33:159–167. https://doi.org/10.21147/j.issn.1000-9604.2021.02.04

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vinod SK, Hau E (2020) Radiotherapy treatment for lung cancer: current status and future directions. Respirology 25:61–71. https://doi.org/10.1111/resp.13870

    Article  PubMed  Google Scholar 

  5. Liedtke C, Kolberg H-C (2016) Systemic therapy of advance/metastatic breast - cancer current evidence and future concepts. Breast Care 11:275–281. https://doi.org/10.1159/000447549

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhu Y, Cohen SM, Rosenzweig MQ, Bender CM (2019) Symptom map of endocrine therapy for breast cancer: a scoping review. Cancer Nurs 42:E19–E30. https://doi.org/10.1097/ncc.0000000000000632

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barroso-Sousa R, Silva DDAFR, Alessi JVM, Mano MS (2016) Neoadjuvant endocrine therapy in breast cancer: current role and future perspectives. Ecancermedicalscience 10:609–609. https://doi.org/10.3332/ecancer.2016.609

    Article  PubMed  PubMed Central  Google Scholar 

  8. Iwamoto H, Izumi K, Makino T, Mizokami A (2022) Androgen deprivation therapy in high-risk localized and locally advanced prostate cancer. Cancers 14. https://doi.org/10.3390/cancers14071803

  9. Button B, Park BH (2016) ESR1 mutations: piece de resistance. Genes Dis 3:124–129. https://doi.org/10.1016/j.gendis.2016.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wadosky KM, Koochekpour S (2017) Androgen receptor splice variants and prostate cancer: from bench to bedside. Oncotarget 8:18550–18576

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cato L, de Tribolet-Hardy J, Lee I, Rottenberg JT, Coleman I, Melchers D, Houtman R, Xiao T, Li W, Uo T et al (2019) ARv7 represses tumor-suppressor genes in castration-resistant prostate cancer. Cancer Cell 35: 401-413. https://doi.org/10.1016/j.ccell.2019.01.008

  12. Zhai F, Wang J, Yang W, Ye M, Jin X (2022) The E3 ligases in cervical cancer and endometrial cancer. Cancers 14. https://doi.org/10.3390/cancers14215354

  13. Liu C, Lou W, Yang JC, Liu L, Armstrong CM, Lombard AP, Zhao R, Noel ODV, Tepper CG, Chen HW et al (2018) Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun 9:4700. https://doi.org/10.1038/s41467-018-07178-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hua H, Zhang H, Kong Q, Jiang Y (2018) Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol 7. https://doi.org/10.1186/s40164-018-0116-7

  15. Molehin D, Filleur S, Pruitt K (2021) Regulation of aromatase expression: potential therapeutic insight into breast cancer treatment. Mol Cellular Endocrinol 531. https://doi.org/10.1016/j.mce.2021.111321

  16. Hernando C, Ortega-Morillo B, Tapia M, Moragón S, Martínez MT, Eroles P, Garrido-Cano I, Adam-Artigues A, Lluch A, Bermejo B et al (2021) Oral selective estrogen receptor degraders (SERDs) as a novel breast cancer therapy: present and future from a clinical perspective. Int J Mol Sci 22. https://doi.org/10.3390/ijms22157812

  17. Xia S, Lin Q (2022) Estrogen receptor bio-activities determine clinical endocrine treatment options in estrogen receptor-positive breast cancer. Technol Cancer Res Treat 21. https://doi.org/10.1177/15330338221090351

  18. Martinkovich S, Shah D, Planey SL, Arnott JA (2014) Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging 9:1437–1452. https://doi.org/10.2147/cia.S66690

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jordan VC (2014) Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer. Endocr Relat Cancer 21:R235-246. https://doi.org/10.1530/erc-14-0092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oceguera-Basurto P, Topete A, Oceguera-Villanueva A, Rivas-Carrillo J, Paz-Davalos M, Quintero-Ramos A, Del Toro-Arreola A, Daneri-Navarro A (2020) Selective estrogen receptor modulators in the prevention of breast cancer in premenopausal women: a review. Trans Cancer Res 9:4444–4456. https://doi.org/10.21037/tcr-19-1956

    Article  CAS  Google Scholar 

  21. Shah YM, Basrur V, Rowan BG (2004) Selective estrogen receptor modulator regulated proteins in endometrial cancer cells. Mol Cell Endocrinol 219:127–139. https://doi.org/10.1016/j.mce.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  22. Figg WD II, Cook K, Clarke R (2014) Aromatase inhibitor plus ovarian suppression as adjuvant therapy in premenopausal women with breast cancer. Cancer Biol Ther 15:1586–1587. https://doi.org/10.4161/15384047.2014.972783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wickerham DL, Costantino JP, Vogel VG, Cronin WM, Cecchini RS, Ford LG, Wolmark N (2009) The use of tamoxifen and raloxifene for the prevention of breast cancer. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer 181:113–119. https://doi.org/10.1007/978-3-540-69297-3_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gennari L (2006) Lasofoxifene: a new type of selective estrogen receptor modulator for the treatment of osteoporosis. Drugs of Today (Barcelona, Spain 1998) 42:355–367. https://doi.org/10.1358/dot.2006.42.6.973583

  25. Hadji P (2012) The evolution of selective estrogen receptor modulators in osteoporosis therapy. Climacteric: the journal of the International Menopause Society 15:513–523. https://doi.org/10.3109/13697137.2012.688079

    Article  CAS  PubMed  Google Scholar 

  26. Zucchini G, Geuna E, Milani A, Aversa C, Martinello R, Montemurro F (2015) Clinical utility of exemestane in the treatment of breast cancer. Int J Women’s Health 7:551–563. https://doi.org/10.2147/ijwh.S69475

    Article  Google Scholar 

  27. Cocconi G (1994) First generation aromatase inhibitors - aminoglutethimide and testololactone. Breast Cancer Res Treat 30:57–80. https://doi.org/10.1007/bf00682741

    Article  CAS  PubMed  Google Scholar 

  28. Michaud LB, Buzdar AU (1999) Risks and benefits of aromatase inhibitors in postmenopausal breast cancer. Drug Saf 21:297–309. https://doi.org/10.2165/00002018-199921040-00005

    Article  CAS  PubMed  Google Scholar 

  29. Wiseman LR, Goa KL (1996) Formestane - a review of its pharmacological properties and clinical efficacy in the treatment of postmenopausal breast cancer. Drugs Aging 9:292–306. https://doi.org/10.2165/00002512-199609040-00006

    Article  CAS  PubMed  Google Scholar 

  30. Kittaneh M, Gluck S (2011) Exemestane in the adjuvant treatment of breast cancer in postmenopausal women. Breast Cancer : Basic Clin Res 5:209–226. https://doi.org/10.4137/bcbcr.S6234

    Article  CAS  Google Scholar 

  31. He D-x, Ma X (2016) Clinical utility of letrozole in the treatment of breast cancer: a Chinese perspective. Oncot Therap 9. https://doi.org/10.2147/ott.S81087

  32. Hanamura T, Hayashi S-i (2018) Overcoming aromatase inhibitor resistance in breast cancer: possible mechanisms and clinical applications. Breast Cancer 25:379–391. https://doi.org/10.1007/s12282-017-0772-1

    Article  PubMed  Google Scholar 

  33. Robinson DR, Wu Y-M, Vats P, Su F, Lonigro RJ, Cao X, Kalyana-Sundaram S, Wang R, Ning Y, Hodges L et al (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45:1446-U1197. https://doi.org/10.1038/ng.2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Busonero C, Leone S, Klemm C, Acconcia F (2018) A functional drug re-purposing screening identifies carfilzomib as a drug preventing 17β-estradiol: ERα signaling and cell proliferation in breast cancer cells. Mol Cell Endocrinol 460:229–237. https://doi.org/10.1016/j.mce.2017.07.027

    Article  CAS  PubMed  Google Scholar 

  35. Boér K (2017) Fulvestrant in advanced breast cancer: evidence to date and place in therapy. Ther Adv Med Oncol 9:465–479. https://doi.org/10.1177/1758834017711097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ali S, Rasool M, Chaoudhry H, Pushparaj N, P, Jha P, Hafiz A, Mahfooz M, Abdus Sami G, Azhar Kamal M, Bashir S, et al (2016) Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation 12:135–139. https://doi.org/10.6026/97320630012135

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li J, Wang Z, Shao Z (2019) Fulvestrant in the treatment of hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer: a review. Cancer Med 8:1943–1957. https://doi.org/10.1002/cam4.2095

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kotani H, Tamura K, Mukohara T, Yonemori K, Kawabata Y, Nicolas X, Tanaka T, Iwata H (2022) AMEERA-2: phase 1 study of oral SERD amcenestrant (SAR439859) in Japanese women with ER+/HER2-advanced breast cancer. Ann Oncol 33:S470–S470. https://doi.org/10.1016/j.annonc.2022.05.026

    Article  Google Scholar 

  39. Kahraman M, Govek SP, Nagasawa JY, Lai A, Bonnefous C, Douglas K, Sensintaffar J, Lu N, Lee K, Aparicio A et al (2018) Discovery and evolution of orally bioavailable selective estrogen receptor degraders for ER plus breast cancer: from GDC-0810 to GDC-0927. Cancer Res 78. https://doi.org/10.1158/1538-7445.Am2018-1648

  40. Ahmed M, Li L-C (2013) Adaptation and clonal selection models of castration-resistant prostate cancer: current perspective. Int J Urol 20:362–371. https://doi.org/10.1111/iju.12005

    Article  PubMed  Google Scholar 

  41. Verma S, Prajapati KS, Kushwaha PP, Shuaib M, Singh AK, Kumar S, Gupta S (2020) Resistance to second generation antiandrogens in prostate cancer: pathways and mechanisms. Cancer Drug Resistance 3:742–761. https://doi.org/10.20517/cdr.2020.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mizokami A, Kadono Y, Kitagawa Y, Izumi K, Konaka H (2017) Therapies for castration-resistant prostate cancer in a new era: the indication of vintage hormonal therapy, chemotherapy and the new medicines. Int J Urol 24:566–572. https://doi.org/10.1111/iju.13372

    Article  CAS  PubMed  Google Scholar 

  43. Feng Q, He B (2019) Androgen receptor signaling in the development of castration-resistant prostate cancer. Front Oncol 9. https://doi.org/10.3389/fonc.2019.00858

  44. Erdogan B, Kostek O, Bekirhacioglu M (2018) Enzalutamide in prostate cancer, a review on enzalutamide and cancer. Eurasian J Med Oncol 2:121–129. https://doi.org/10.14744/ejmo.2018.72098

    Article  Google Scholar 

  45. Gul A, Garcia JA, Barata PC (2019) Treatment of non-metastatic castration-resistant prostate cancer: focus on apalutamide. Cancer Manag Res 11:7253–7262. https://doi.org/10.2147/cmar.S165706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Palmieri VE, Roviello G, D’Angelo A, Casadei C, De Giorgi U, Giorgione R (2021) Darolutamide in hormone-sensitive and castration-resistant prostate cancer. Expert Rev Clin Pharmacol 14:535–544. https://doi.org/10.1080/17512433.2021.1901580

    Article  CAS  PubMed  Google Scholar 

  47. Taneja SS (2016) Re: Enzalutamide versus bicalutamide in castration-resistant prostate cancer: the STRIVE Trial. J Urol 196:741–741. https://doi.org/10.1016/j.juro.2016.06.066

    Article  PubMed  Google Scholar 

  48. Taneja SS (2013) Re: Increased survival with enzalutamide in prostate cancer after chemotherapy Editorial Comment. J Urol 189:123–124. https://doi.org/10.1016/j.juro.2012.10.050

    Article  PubMed  Google Scholar 

  49. Tombal B, Saad F, Penson D, Hussain M, Sternberg CN, Morlock R, Ramaswatny K, Ivanescu C, Attard G (2019) Patient-reported outcomes following enzalutamide or placebo in men with non-metastatic, castration-resistant prostate cancer (PROSPER): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 20:556–569. https://doi.org/10.1016/s1470-2045(18)30898-2

    Article  CAS  PubMed  Google Scholar 

  50. Taneja SS (2014) Re: Enzalutamide in metastatic prostate cancer before chemotherapy. J Urol 192:1419–1419

    Google Scholar 

  51. Taneja SS (2020) Re: Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. J Urol 204:1097–1098. https://doi.org/10.1097/ju.0000000000001261.01

    Article  PubMed  Google Scholar 

  52. Lavaud P, Dumont C, Thibault C, Albiges L, Baciarello G, Colomba E, Flippot R, Fuerea A, Loriot Y, Fizazi K (2020) Next-generation androgen receptor inhibitors in non-metastatic castration-resistant prostate cancer. Therap Adv Med Oncol 12. https://doi.org/10.1177/1758835920978134

  53. Vasaitis TS, Bruno RD, Njar VC (2011) CYP17 inhibitors for prostate cancer therapy. J Steroid Biochem Mol Biol 125:23–31. https://doi.org/10.1016/j.jsbmb.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  54. Caffo O, Veccia A, Kinspergher S, Maines F (2018) Abiraterone acetate and its use in the treatment of metastatic prostate cancer: a review. Future Oncol 14:431–442. https://doi.org/10.2217/fon-2017-0430

    Article  CAS  PubMed  Google Scholar 

  55. Gomez L, Kovac JR, Lamb DJ (2015) CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids 95:80–87. https://doi.org/10.1016/j.steroids.2014.12.021

    Article  CAS  PubMed  Google Scholar 

  56. Zobniw CM, Causebrook A, Fong MK (2014) Clinical use of abiraterone in the treatment of metastatic castration-resistant prostate cancer. Research and reports in urology 6:97–105. https://doi.org/10.2147/rru.S29003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alex AB, Pal SK, Agarwal N (2016) CYP17 inhibitors in prostate cancer: latest evidence and clinical potential. Therapeutic Advances in Medical Oncology 8:267–275. https://doi.org/10.1177/1758834016642370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Parylo S, Vennepureddy A, Dhar V, Patibandla P, Sokoloff A (2019) Role of cyclin-dependent kinase 4/6 inhibitors in the current and future eras of cancer treatment. J Oncol Pharm Pract 25:110–129. https://doi.org/10.1177/1078155218770904

    Article  CAS  PubMed  Google Scholar 

  59. Murphy CG, Dickler MN (2015) The role of CDK4/6 inhibition in breast cancer. Oncologist 20:483-U449. https://doi.org/10.1634/theoncologist.2014-0443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jhaveri K, Burris HA III, Yap TA, Hamilton E, Rugo HS, Goldman JW, Dann S, Liu F, Wong GY, Krupka H et al (2021) The evolution of cyclin dependent kinase inhibitors in the treatment of cancer. Expert Rev Anticancer Ther 21:1105–1124. https://doi.org/10.1080/14737140.2021.1944109

    Article  CAS  PubMed  Google Scholar 

  61. Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q (2020) The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci 21. https://doi.org/10.3390/ijms21061960

  62. George MA, Qureshi S, Omene C, Toppmeyer DL, Ganesan S (2021) Clinical and pharmacologic differences of CDK4/6 inhibitors in breast cancer. Front Oncol 11. https://doi.org/10.3389/fonc.2021.693104

  63. Schmidt M (2016) Palbociclib - from bench to bedside and beyond. Breast Care 11:177–181. https://doi.org/10.1159/000447001

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cristofanilli M, DeMichele A, Giorgetti C, Turner NC, Slamon DJ, Im S-A, Masuda N, Verma S, Loi S, Colleoni M et al (2018) Predictors of prolonged benefit from palbociclib plus fulvestrant in women with endocrine-resistant hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer in PALOMA-3. Eur J Cancer 104:21–31. https://doi.org/10.1016/j.ejca.2018.08.011

    Article  CAS  PubMed  Google Scholar 

  65. Martin M, Garcia-Saenz JA, Manso L, Llombart A, Cassinello A, Atienza M, Ringeisen F, Ciruelos E (2020) Abemaciclib, a CDK4 and CDK6 inhibitor for the treatment of metastatic breast cancer. Future Oncol 16:2763–2778. https://doi.org/10.2217/fon-2020-0604

    Article  CAS  PubMed  Google Scholar 

  66. Martin JM, Goldstein LJ (2018) Profile of abemaciclib and its potential in the treatment of breast cancer. Onco Targets Ther 11:5253–5259. https://doi.org/10.2147/ott.S149245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park W-C (2016) Role of ovarian function suppression in premenopausal women with early breast cancer. J Breast Cancer 19:341–348. https://doi.org/10.4048/jbc.2016.19.4.341

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li Z-Y, Dong Y-L, Cao X-Z, Ren S-S, Zhang Z (2022) Gonadotropin-releasing hormone agonists for ovarian protection during breast cancer chemotherapy: a systematic review and meta-analysis. Menopause: the Journal of the North American Menopause Society 29:1093–1100. https://doi.org/10.1097/gme.0000000000002019

    Article  PubMed  Google Scholar 

  69. Sukumar JS, Quiroga D, Kassem M, Grimm M, Shinde NV, Appiah L, Palettas M, Stephens J, Gatti-Mays ME, Pariser A et al (2021) Patient preferences and adherence to adjuvant GnRH analogs among premenopausal women with hormone receptor positive breast cancer. Breast Cancer Res Treat 190:183–188. https://doi.org/10.1007/s10549-021-06368-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jackisch C, Schneeweiss A (2006) Adjuvant endocrine therapy in pre- and postmenopausal patients. Breast Care 1:242–247. https://doi.org/10.1159/000094756

    Article  Google Scholar 

  71. Diep CH, Daniel AR, Mauro LJ, Knutson TP, Lange CA (2015) Progesterone action in breast, uterine, and ovarian cancers. J Mol Endocrinol 54:R31–R53. https://doi.org/10.1530/jme-14-0252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fedotcheva TA (2021) Clinical use of progestins and their mechanisms of action: present and future (review). Sovremennye Tehnologii V Medicine 13:93–106. https://doi.org/10.17691/stm2021.13.1.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim JJ, Chapman-Davis E (2010) Role of progesterone in endometrial cancer. Seminars in Reproductive Medicine 28:81–90. https://doi.org/10.1055/s-0029-1242998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Setiawan VW, Yang HP, Pike MC, McCann SE, Yu H, Xiang Y-B, Wolk A, Wentzensen N, Weiss NS, Webb PM et al (2013) Type I and II endometrial cancers: have they different risk factors? Journal of Clinical Oncology 31: 2607-+. https://doi.org/10.1200/jco.2012.48.2596

    Article  Google Scholar 

  75. Remmerie M, Janssens V (2018) Targeted therapies in type II endometrial cancers: too little, but not too late. Int J Mol Sci 19. https://doi.org/10.3390/ijms19082380

  76. Zhang Y, Zhao D, Gong C, Zhang F, He J, Zhang W, Zhao Y, Sun J (2015) Prognostic role of hormone receptors in endometrial cancer: a systematic review and meta-analysis. World J Surg Oncol 13. https://doi.org/10.1186/s12957-015-0619-1

  77. Carlson MJ, Thiel KW, Leslie KK (2014) Past, present, and future of hormonal therapy in recurrent endometrial cancer. Int J Women's Health 6:429–435. https://doi.org/10.2147/ijwh.S40942

    Article  Google Scholar 

  78. Nieto H, Boelaert K (2016) Thyroid-stimulating hormone in thyroid cancer: does it matter? Endocr Relat Cancer 23:T109–T121. https://doi.org/10.1530/erc-16-0328

    Article  PubMed  Google Scholar 

  79. Hoermann R, Midgley JEM, Larisch R, Dietrich JW (2015) Homeostatic control of the thyroid-pituitary axis: perspectives for diagnosis and treatment. Front Endocrinol 6. https://doi.org/10.3389/fendo.2015.00177

  80. Eligar V, Taylor PN, Okosieme OE, Leese GP, Dayan CM (2016) Thyroxine replacement: a clinical endocrinologist’s viewpoint. Ann Clin Biochem 53:421–433. https://doi.org/10.1177/0004563216642255

    Article  CAS  PubMed  Google Scholar 

  81. Tsai C-F, Cheng YK, Lu D-Y, Wang S-L, Chang C-N, Chang P-C, Yeh W-L (2018) Inhibition of estrogen receptor reduces connexin 43 expression in breast cancers. Toxicol Appl Pharmacol 338:182–190. https://doi.org/10.1016/j.taap.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  82. Radin DP, Patel P (2016) Delineating the molecular mechanisms of tamoxifen’s oncolytic actions in estrogen receptor-negative cancers. Eur J Pharmacol 781:173–180. https://doi.org/10.1016/j.ejphar.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  83. Lochab S, Pal P, Kanaujiya JK, Tripathi SB, Kapoor I, Bhatt MLB, Sanyal S, Behre G, Trivedi AK (2012) Proteomic identification of E6AP as a molecular target of tamoxifen in MCF7 cells. Proteomics 12:1363–1377. https://doi.org/10.1002/pmic.201100572

    Article  CAS  PubMed  Google Scholar 

  84. Okada M, Ohtake F, Nishikawa H, Wu W, Saeki Y, Takana K, Ohta T (2015) Liganded ER alpha stimulates the E3 ubiquitin ligase activity of UBE3C to facilitate cell proliferation. Mol Endocrinol 29:1646–1657. https://doi.org/10.1210/me.2015-1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ma L, Wang L, Shan Y, Nafees M, Ihab E, Zhang R, Wang F, Yin W (2017) Suppression of cancer stemness by upregulating Ligand-of-Numb protein X1 in colorectal carcinoma. Plos One 12. https://doi.org/10.1371/journal.pone.0188665

  86. Shim J-H, Choi C-S, Lee E-C, Kim MY, Chun Y-J (2009) Tamoxifen suppresses clusterin level through Akt inactivation and proteasome degradation in human prostate cancer cells. Biomol Ther 17:25–31. https://doi.org/10.4062/biomolther.2009.17.1.25

    Article  CAS  Google Scholar 

  87. Cyrus K, Wehenkel M, Choi E-Y, Lee H, Swanson H, Kim K-B (2010) Jostling for position: optimizing linker location in the design of estrogen receptor-targeting PROTACs. ChemMedChem 5:979–985. https://doi.org/10.1002/cmdc.201000146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li W, Xu L, Che X, Li H, Zhang Y, Song N, Wen T, Hou K, Yang Y, Zhou L et al (2018) C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells. Bmc Cancer 18. https://doi.org/10.1186/s12885-018-4387-5

  89. Yan S-C, Liu Y-P, Zhang L-Y, Qu J-L, Xu L, Liu J, Zhang Y, Hou K-Z, Teng Y-E, Qu X-J (2011) Ubiquitin ligase c-Cbl is involved in tamoxifen-induced apoptosis of MCF-7 cells by downregulating the survival signals. Acta Oncol 50:693–699. https://doi.org/10.3109/0284186x.2010.543144

    Article  CAS  PubMed  Google Scholar 

  90. Tian Z, Tang J, Liao X, Gong Y, Yang Q, Wu Y, Wu G (2020) TRIM8 inhibits breast cancer proliferation by regulating estrogen signaling. Am J Cancer Res 10: 3440

  91. Balasenthil S, Chen N, Killary A (2019) On the role of DEAR1 as a novel ubiquitin ligase for ER alpha and predictor of tamoxifen response in ER positive breast cancer. Cancer Res 79. https://doi.org/10.1158/1538-7445.Sabcs18-1009

  92. Interiano RB, Yang J, Harris AL, Davidoff AM (2014) Seven in Absentia Homolog 2 (SIAH2) downregulation is associated with tamoxifen resistance in MCF-7 breast cancer cells. J Surg Res 190:203–209. https://doi.org/10.1016/j.jss.2014.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tang SC, Lion Q, Peulen O, Chariot P, Lavergne A, Mayer A, Fuster PA, Close P, Klein S, Florin A et al (2022) The E3 ligase COP1 promotes ER alpha signaling and suppresses EMT in breast cancer. Oncogene 41:173–190. https://doi.org/10.1038/s41388-021-02038-3

    Article  CAS  PubMed  Google Scholar 

  94. Han D, Wang L, Long L, Su P, Luo D, Zhang H, Li Z, Chen B, Zhao W, Zhang N et al (2022) The E3 ligase TRIM4 facilitates SET ubiquitin-mediated degradation to enhance ER-alpha action in breast cancer. Adv Sci 9. https://doi.org/10.1002/advs.202201701

  95. Johmura Y, Maeda I, Suzuki N, Wu W, Goda A, Morita M, Yamaguchi K, Yamamoto M, Nagasawa S, Kojima Y et al (2018) Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer. J Clin Investig 128:5603–5619. https://doi.org/10.1172/jci121679

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hamburger AW (2008) The role of ErbB3 and its binding partners in breast cancer progression and resistance to hormone and tyrosine kinase directed therapies. J Mammary Gland Biol Neoplasia 13:225–233. https://doi.org/10.1007/s10911-008-9077-5

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhou Z, Song X, Chi J, Gius DR, Huang Y, Cristofanilli M, Wan Y (2020) Regulation of KLF4 by posttranslational modification circuitry in endocrine resistance. Cell Signal 70. https://doi.org/10.1016/j.cellsig.2020.109574

  98. Pan X, Zhou T, Tai Y-H, Wang C, Zhao J, Cao Y, Chen Y, Zhang P-J, Yu M, Zhen C et al (2011) Elevated expression of CUEDC2 protein confers endocrine resistance in breast cancer. Nat Med 17:708-U799. https://doi.org/10.1038/nm.2369

    Article  CAS  PubMed  Google Scholar 

  99. Wu H, Yao S, Zhang S, Wang J-R, Guo P-D, Li X-M, Gan W-J, Mei L, Gao T-M, Li J-M (2017) Elevated expression of Erbin destabilizes ER alpha protein and promotes tumorigenesis in hepatocellular carcinoma. J Hepatol 66:1193–1204. https://doi.org/10.1016/j.jhep.2017.01.030

    Article  CAS  PubMed  Google Scholar 

  100. Horie K, Urano T, Ikeda K, Inoue S (2003) Estrogen-responsive RING finger protein controls breast cancer growth. J Steroid Biochem Mol Biol 85:101–104. https://doi.org/10.1016/s0960-0760(03)00209-7

    Article  CAS  PubMed  Google Scholar 

  101. Wang B, Liu K, Lin H-Y, Bellam N, Ling S, Lin W-C (2010) 14–3-3 tau regulates ubiquitin-independent proteasomal degradation of p21, a novel mechanism of p21 downregulation in breast cancer. Mol Cell Biol 30:1508–1527. https://doi.org/10.1128/mcb.01335-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tang WG, Li Y, Yu DN, Thomas-Tikhonenko A, Spiegelman VS, Fuchs SY (2005) Targeting beta-transducin repeat-containing protein E3 ubiquitin ligase augments the effects of antitumor drugs on breast cancer cells. Can Res 65:1904–1908. https://doi.org/10.1158/0008-5472.Can-04-2597

    Article  CAS  Google Scholar 

  103. Lu R, Hu X, Zhou J, Sun J, Zhu AZ, Xu X, Zheng H, Gao X, Wang X, Jin H et al (2016) COPS5 amplification and overexpression confers tamoxifen-resistance in ER alpha-positive breast cancer by degradation of NCoR. Nat Comm 7. https://doi.org/10.1038/ncomms12044

  104. Khanal P, Yun HJ, Lim SC, Ahn SG, Yoon HE, Kang KW, Hong R, Choi HS (2012) Proyl isomerase Pin1 facilitates ubiquitin-mediated degradation of cyclin-dependent kinase 10 to induce tamoxifen resistance in breast cancer cells. Oncogene 31:3845–3856. https://doi.org/10.1038/onc.2011.548

    Article  CAS  PubMed  Google Scholar 

  105. MacDonald TM, Thomas LN, Daze E, Marignani P, Barnes PJ, Too CKL (2019) Prolactin-inducible EDD E3 ubiquitin ligase promotes TORC1 signalling, anti-apoptotic protein expression, and drug resistance in breast cancer cells. Am J Cancer Res 9:1484–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hao M, Weng X, Wang Y, Sun X, Yan T, Li Y, Hou L, Meng X, Wang J (2018) Targeting CXCR7 improves the efficacy of breast cancer patients with tamoxifen therapy. Biochem Pharmacol 147:128–140. https://doi.org/10.1016/j.bcp.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  107. Xue M, Zhang K, Mu K, Xu J, Yang H, Liu Y, Wang B, Wang Z, Li Z, Kong Q et al (2019) Regulation of estrogen signaling and breast cancer proliferation by an ubiquitin ligase TRIM56. Oncogenesis 8. https://doi.org/10.1038/s41389-019-0139-x

  108. Zhuang T, Wang B, Tan X, Wu L, Li X, Li Z, Cai Y, Fan R, Yang X, Zhang C et al (2022) TRIM3 facilitates estrogen signaling and modulates breast cancer cell progression. Cell Comm Signal 20. https://doi.org/10.1186/s12964-022-00861-z

  109. Ding J, Kuang P (2021) Regulation of ER alpha stability and estrogen signaling in breast cancer by HOIL-1. Front Oncol 11. https://doi.org/10.3389/fonc.2021.664689

  110. Donley C, McClelland K, McKeen HD, Nelson L, Yakkundi A, Jithesh PV, Burrows J, McClements L, Valentine A, Prise KM et al (2014) Identification of RBCK1 as a novel regulator of FKBPL: implications for tumor growth and response to tamoxifen. Oncogene 33:3441–3450. https://doi.org/10.1038/onc.2013.306

    Article  CAS  PubMed  Google Scholar 

  111. Chen C, Zhou Z, Sheehan CE, Slodkowska E, Sheehan CB, Boguniewicz A, Ross JS (2009) Overexpression of WWP1 is associated with the estrogen receptor and insulin-like growth factor receptor 1 in breast carcinoma. Int J Cancer 124:2829–2836. https://doi.org/10.1002/ijc.24266

    Article  CAS  PubMed  Google Scholar 

  112. Li Y, Xie N, Gleave ME, Rennie PS, Dong X (2015) AR-v7 protein expression is regulated by protein kinase and phosphatase. Oncotarget 6:33743–33754. https://doi.org/10.18632/oncotarget.5608

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nikhil K, Kamra M, Raza A, Haymour HS, Shah K (2020) Molecular interplay between AURKA and SPOP dictates CRPC pathogenesis via androgen receptor. Cancers (Basel) 12. https://doi.org/10.3390/cancers12113247

  114. Adelaiye-Ogala R, Damayanti NP, Orillion AR, Arisa S, Chintala S, Titus MA, Kao C, Pili R (2018) Therapeutic targeting of sunitinib-induced AR phosphorylation in renal cell carcinoma. Cancer Res 78:2886–2896. https://doi.org/10.1158/0008-5472.Can-17-3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu H, You L, Li Y, Zhao Z, Shi G, Chen Z, Wang Z, Li X, Du S, Ye W et al (2020) Loss of a negative feedback loop between IRF8 and AR promotes prostate cancer growth and enzalutamide resistance. Cancer Res 80:2927–2939. https://doi.org/10.1158/0008-5472.Can-19-2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu X, Han W, Gulla S, Simon NI, Gao Y, Cai C, Yang H, Zhang X, Liu J, Balk SP et al (2016) Protein phosphatase 1 suppresses androgen receptor ubiquitylation and degradation. Oncotarget 7:1754–1764. https://doi.org/10.18632/oncotarget.6434

    Article  PubMed  Google Scholar 

  117. Zhang B, Zhang M, Yang Y, Li Q, Yu J, Zhu S, Niu Y, Shang Z (2022) Targeting KDM4A-AS1 represses AR/AR-Vs deubiquitination and enhances enzalutamide response in CRPC. Oncogene 41:387–399. https://doi.org/10.1038/s41388-021-02103-x

    Article  CAS  PubMed  Google Scholar 

  118. Yao M, Shi X, Li Y, Xiao Y, Butler W, Huang Y, Du L, Wu T, Bian X, Shi G et al (2020) LINC00675 activates androgen receptor axis signaling pathway to promote castration-resistant prostate cancer progression. Cell Death Dis 11:638. https://doi.org/10.1038/s41419-020-02856-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu S, Zhao D, Yan L, Jiang W, Kim JS, Gu B, Liu Q, Wang R, Xia B, Zhao JC et al (2018) BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1. Nat Commun 9:500. https://doi.org/10.1038/s41467-018-02863-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Khatun A, Shimozawa M, Kito H, Kawaguchi M, Fujimoto M, Ri M, Kajikuri J, Niwa S, Fujii M, Ohya S (2018) Transcriptional repression and protein degradation of the Ca(2+)-Activated K(+) Channel K(Ca)1.1 by androgen receptor inhibition in human breast cancer cells. Front Physiol 9:312. https://doi.org/10.3389/fphys.2018.00312

  121. Xu S, Fan L, Jeon HY, Zhang F, Cui X, Mickle MB, Peng G, Hussain A, Fazli L, Gleave ME et al (2020) p300-mediated acetylation of histone demethylase JMJD1A prevents its degradation by ubiquitin ligase STUB1 and enhances its activity in prostate cancer. Cancer Res 80:3074–3087. https://doi.org/10.1158/0008-5472.Can-20-0233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li H, Mohamed AA, Sharad S, Umeda E, Song Y, Young D, Petrovics G, McLeod DG, Sesterhenn IA, Sreenath T et al (2015) Silencing of PMEPA1 accelerates the growth of prostate cancer cells through AR, NEDD4 and PTEN. Oncotarget 6:15137–15149. https://doi.org/10.18632/oncotarget.3526

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang H, Li XX, Yang Y, Zhang Y, Wang HY, Zheng XFS (2018) Significance and mechanism of androgen receptor overexpression and androgen receptor/mechanistic target of rapamycin cross-talk in hepatocellular carcinoma. Hepatology (Baltimore, MD) 67:2271–2286. https://doi.org/10.1002/hep.29715

    Article  CAS  PubMed  Google Scholar 

  124. Zhou T, Wang S, Song X, Liu W, Dong F, Huo Y, Zou R, Wang C, Zhang S, Liu W et al (2022) RNF8 up-regulates AR/ARV7 action to contribute to advanced prostate cancer progression. Cell Death Dis 13:352. https://doi.org/10.1038/s41419-022-04787-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. An J, Wang C, Deng Y, Yu L, Huang H (2014) Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep 6:657–669. https://doi.org/10.1016/j.celrep.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Guo Y, He J, Zhang H, Chen R, Li L, Liu X, Huang C, Qiang Z, Zhou Z, Wang Y et al (2022) Linear ubiquitination of PTEN impairs its function to promote prostate cancer progression. Oncogene. https://doi.org/10.1038/s41388-022-02485-6

  127. Li J, Alyamani M, Zhang A, Chang KH, Berk M, Li Z, Zhu Z, Petro M, Magi-Galluzzi C, Taplin ME et al (2017) Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer. eLife 6. https://doi.org/10.7554/eLife.20183

  128. Fan MY, Bigsby RM, Nephew KP (2003) The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-alpha and essential for the anti proliferative activity of ICI 182,780 in ER alpha-positive breast cancer cells. Mol Endocrinol 17:356–365. https://doi.org/10.1210/me.2002-0323

    Article  CAS  PubMed  Google Scholar 

  129. Callige M, Kieffer I, Richard-Foy H (2005) CSN5/Jab1 is involved in ligand-dependent degradation of estrogen receptor alpha by the proteasome. Mol Cell Biol 25:4349–4358. https://doi.org/10.1128/mcb.25.11.4349-4358.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Long XH, Nephew KP (2006) Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J Biol Chem 281:9607–9615. https://doi.org/10.1074/jbc.M510809200

    Article  CAS  PubMed  Google Scholar 

  131. Casa AJ, Hochbaum D, Sreekumar S, Oesterreich S, Lee AV (2015) The estrogen receptor alpha nuclear localization sequence is critical for fulvestrant-induced degradation of the receptor. Mol Cell Endocrinol 415:76–86. https://doi.org/10.1016/j.mce.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  132. Berry NB, Fan M, Nephew KP (2008) Estrogen receptor-alpha hinge-region lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol 22:1535–1551. https://doi.org/10.1210/me.2007-0449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fan MY, Park A, Nephew KP (2005) CHIP (carboxyl terminus of Hsc70-interacting protein) promotes basal and geldanamycin-induced degradation of estrogen receptor-alpha. Mol Endocrinol 19:2901–2914. https://doi.org/10.1210/me.2005-0111

    Article  CAS  PubMed  Google Scholar 

  134. Nakajima Y, Akaogi K, Suzuki T, Osakabe A, Yamaguchi C, Sunahara N, Ishida J, Kako K, Ogawa S, Fujimura T et al (2011) Estrogen regulates tumor growth through a nonclassical pathway that includes the transcription factors ERβ and KLF5. Sci Signal 4:ra22. https://doi.org/10.1126/scisignal.2001551

  135. Lin C-Y, Yu C-J, Liu C-Y, Chao T-C, Huang C-C, Tseng L-M, Lai J-I (2022) CDK4/6 inhibitors downregulate the ubiquitin-conjugating enzymes UBE2C/S/T involved in the ubiquitin-proteasome pathway in ER plus breast cancer. Clin Transl Oncol 24:2120–2135. https://doi.org/10.1007/s12094-022-02881-0

    Article  CAS  PubMed  Google Scholar 

  136. Miettinen TP, Peltier J, Hartlova A, Gierlinski M, Jansen VM, Trost M, Bjorklund M (2018) Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. Embo J 37. https://doi.org/10.15252/embj.201798359

  137. Zhao S, El-Deiry WS (2021) Identification of Smurf2 as a HIF-1α degrading E3 ubiquitin ligase. Oncotarget 12:1970–1979. https://doi.org/10.18632/oncotarget.28081

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chaikovsky AC, Li C, Jeng EE, Loebell S, Lee MC, Murray CW, Cheng R, Demeter J, Swaney DL, Chen SH et al (2021) The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature 592:794–798. https://doi.org/10.1038/s41586-021-03474-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jia W, Zhao X, Zhao L, Yan H, Li J, Yang H, Huang G, Liu J (2018) Non-canonical roles of PFKFB3 in regulation of cell cycle through binding to CDK4. Oncogene 37:1685–1698. https://doi.org/10.1038/s41388-017-0072-4

    Article  CAS  PubMed  Google Scholar 

  140. Khatri R, Shah P, Guha R, Rassool FV, Tomkinson AE, Brodie A, Jaiswal AK (2015) Aromatase inhibitor-mediated downregulation of INrf2 (Keap1) leads to increased Nrf2 and resistance in breast cancer. Mol Cancer Ther 14:1728–1737. https://doi.org/10.1158/1535-7163.Mct-14-0672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cairns J, Ingle JN, Kalari KR, Goetz MP, Weinshilboum RM, Gao H, Li H, Bari MG, Wang L (2022) Anastrozole regulates fatty acid synthase in breast cancer. Mol Cancer Ther 21:206–216. https://doi.org/10.1158/1535-7163.Mct-21-0509

    Article  CAS  PubMed  Google Scholar 

  142. Rawat A, Gopal G, Selvaluxmy G, Rajkumar T (2013) Inhibition of ubiquitin conjugating enzyme UBE2C reduces proliferation and sensitizes breast cancer cells to radiation, doxorubicin, tamoxifen and letrozole. Cell Oncol (Dordr) 36:459–467. https://doi.org/10.1007/s13402-013-0150-8

    Article  CAS  PubMed  Google Scholar 

  143. Mukherjee B, Mayer D (2008) Dihydrotestosterone interacts with EGFR/MAPK signalling and modulates EGFR levels in androgen receptor-positive LNCaP prostate cancer cells. Int J Oncol 33:623–629

    CAS  PubMed  Google Scholar 

  144. Nunes JJ, Pandey SK, Yadav A, Goel S, Ateeq B (2017) Targeting NF-kappa B signaling by artesunate restores sensitivity of castrate-resistant prostate cancer cells to antiandrogens. Neoplasia 19:333–345. https://doi.org/10.1016/j.neo.2017.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Waltregny D, Leav I, Signoretti S, Soung P, Lin D, Merk F, Adams JY, Bhattacharya N, Cirenei N, Loda M (2001) Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol Endocrinol (Baltimore, Md) 15:765–782. https://doi.org/10.1210/mend.15.5.0640

    Article  CAS  PubMed  Google Scholar 

  146. Zwergel T, Tahmatzopoulos A, Wullich B, Zwergel U, Stöckle M, Unteregger G (2004) Proteasome inhibitors and their combination with antiandrogens: effects on apoptosis, cellular proliferation and viability of prostatic adenocarcinoma cell cultures. Prostate Cancer Prostatic Dis 7:138–143. https://doi.org/10.1038/sj.pcan.4500709

    Article  CAS  PubMed  Google Scholar 

  147. Lin HY, Ko CY, Kao TJ, Yang WB, Tsai YT, Chuang JY, Hu SL, Yang PY, Lo WL, Hsu TI (2019) CYP17A1 maintains the survival of glioblastomas by regulating SAR1-mediated endoplasmic reticulum health and redox homeostasis. Cancers (Basel) 11. https://doi.org/10.3390/cancers11091378

  148. Amita M, Takahashi T, Igarashi H, Nagase S (2016) Clomiphene citrate down-regulates estrogen receptor-alpha through the ubiquitin-proteasome pathway in a human endometrial cancer cell line. Mol Cell Endocrinol 428:142–147. https://doi.org/10.1016/j.mce.2016.03.029

    Article  CAS  PubMed  Google Scholar 

  149. Xia X, He J, Liu B, Shao Z, Xu Q, Hu T, Yu C, Liu X, Liao Y, Liu N et al (2020) Targeting ER alpha degradation by L-Tetrahydropalmatine provides a novel strategy for breast cancer treatment. Int J Biol Sci 16:2192–2204. https://doi.org/10.7150/ijbs.44005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen L, Li J, Farah E, Sarkar S, Ahmad N, Gupta S, Larner J, Liu X (2016) Cotargeting HSP90 and its client proteins for treatment of prostate cancer. Mol Cancer Ther 15:2107–2118. https://doi.org/10.1158/1535-7163.Mct-16-0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Min H-Y, Lee H-Y (2022) Molecular targeted therapy for anticancer treatment. Exp Mol Med. https://doi.org/10.1038/s12276-022-00864-3

  152. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T et al (2021) Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transd Target Therap 6. https://doi.org/10.1038/s41392-021-00572-w

  153. Megino-Luque C, Moiola CP, Molins-Escuder C, Lopez-Gil C, Gil-Moreno A, Matias-Guiu X, Colas E, Eritja N (2020) Small-molecule inhibitors (SMIs) as an effective therapeutic strategy for endometrial cancer. Cancers 12. https://doi.org/10.3390/cancers12102751

  154. Zhan Y, Wang T, Liu C (2022) Experimental research progress of proteolysis targeting chimeras in treatment of malignant tumors. Chinese J New Drugs Clin Rem 41:393–398

    Google Scholar 

  155. Li X, Song Y (2020) Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J Hematol Oncol 13. https://doi.org/10.1186/s13045-020-00885-3

  156. Wang Y, Long J, Chang Q, Hu W-w, Hu G-y, Li Q-b (2020) The application of small molecule PROTAC in researches of different targets. Yaoxue Xuebao 55:446–452. https://doi.org/10.16438/j.0513-4870.2019-0924

    Article  CAS  Google Scholar 

  157. Sheng X-y, Wu S-h, Li B-l, Li X-n, Wu H-s, Cao J (2021) Advances in the optimization of the linker in proteolysis-targeting chimeras (PROTAC). Yaoxue Xuebao 56:445–455. https://doi.org/10.16438/j.0513-4870.2020-1272

    Article  CAS  Google Scholar 

  158. Loren G, Espuny I, Llorente A, Donoghue C, Verdaguer X, Gomis RR, Riera A (2022) Design and optimization of oestrogen receptor PROTACs based on 4-hydroxytamoxifen. Eur J Med Chem 243:114770–114770. https://doi.org/10.1016/j.ejmech.2022.114770

    Article  CAS  PubMed  Google Scholar 

  159. Dai Y, Yue N, Gong J, Liu C, Li Q, Zhou J, Huang W, Qian H (2020) Development of cell-permeable peptide-based PROTACs targeting estrogen receptor alpha. Euro J Med Chem 187. https://doi.org/10.1016/j.ejmech.2019.111967

  160. Zhao Y, Zhao C, Lu J, Wu J, Li C, Hu Z, Tian W, Yang L, Xiang J, Zhou H et al (2019) Sesterterpene MHO7 suppresses breast cancer cells as a novel estrogen receptor degrader. Pharmacol Res 146. https://doi.org/10.1016/j.phrs.2019.104294

  161. Yu T, Zhou Z, Mu Y, Lopes GdL, Luo KQ (2014) A novel anti-cancer agent, acetyltanshinone IIA, inhibits oestrogen receptor positive breast cancer cell growth by down-regulating the oestrogen receptor. Cancer Lett 346:94–103. https://doi.org/10.1016/j.canlet.2013.12.023

    Article  CAS  PubMed  Google Scholar 

  162. Alao JP, Lam EWF, Ali S, Buluwela L, Bordogna W, Lockey P, Varshochi R, Stavropoulou AV, Coombes RC, Vigushin DM (2004) Histone deacetylase inhibitor trichostatin a represses estrogen receptor alpha-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines. Clin Cancer Res 10:8094–8104. https://doi.org/10.1158/1078-0432.Ccr-04-1023

    Article  CAS  PubMed  Google Scholar 

  163. Chen Y, Zhang J, Zhang M, Song Y, Zhang Y, Fan S, Ren S, Fu L, Zhang N, Hui H et al (2021) Baicalein resensitizes tamoxifen-resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia-inducible factor-1 alpha. Clin Translational Med 11. https://doi.org/10.1002/ctm2.577

  164. Huang H-C, Way T-D, Lin C-L, Lin J-K (2008) EGCG stabilizes p27(kip1) in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein. Endocrinology 149:5972–5983. https://doi.org/10.1210/en.2008-0408

    Article  CAS  PubMed  Google Scholar 

  165. Yin Y, Xie C-M, Li H, Tan M, Chen G, Schiff R, Xiong X, Sun Y (2019) The FBXW2-MSX2-SOX2 axis regulates stem cell property and drug resistance of cancer cells. Proc Natl Acad Sci USA 116:20528–20538. https://doi.org/10.1073/pnas.1905973116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kuo C-C, Liu J-F, Shiah H-S, Ma L-C, Chang J-Y (2007) Tamoxifen accelerates proteasomal degradation of O-6-methylguanine DNA methyltransferase in human cancer cells. Int J Cancer 121:2293–2300. https://doi.org/10.1002/ijc.22927

    Article  CAS  PubMed  Google Scholar 

  167. Lee GT, Nagaya N, Desantis J, Madura K, Sabaawy HE, Kim WJ, Vaz RJ, Cruciani G, Kim IY (2021) Effects of MTX-23, a novel PROTAC of androgen receptor splice variant-7 and androgen receptor, on CRPC resistant to second-line antiandrogen therapy. Mol Cancer Ther 20:490–499. https://doi.org/10.1158/1535-7163.Mct-20-0417

    Article  CAS  PubMed  Google Scholar 

  168. Wu Y, Xue J, Li J (2022) Chemical degrader enhances the treatment of androgen receptor-positive triple-negative breast cancer. Archives Biochem Biophys 721: 109194. https://doi.org/10.1016/j.abb.2022.109194

  169. Liu C, Armstrong CM, Ning S, Yang JC, Lou W, Lombard AP, Zhao J, Wu CY, Yu A, Evans CP et al (2021) ARVib suppresses growth of advanced prostate cancer via inhibition of androgen receptor signaling. Oncogene 40:5379–5392. https://doi.org/10.1038/s41388-021-01914-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xiang Z, Sun Y, You B, Zhang M, Huang C, Yu J, You X, Wu D, Chang C (2021) Suppressing BCL-XL increased the high dose androgens therapeutic effect to better induce the enzalutamide-resistant prostate cancer autophagic cell death. Cell Death Dis 12:68. https://doi.org/10.1038/s41419-020-03321-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. He Y, Peng S, Wang J, Chen H, Cong X, Chen A, Hu M, Qin M, Wu H, Gao S et al (2016) Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer. Nat Commun 7:13122. https://doi.org/10.1038/ncomms13122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Liu C, Yang JC, Armstrong CM, Lou W, Liu L, Qiu X, Zou B, Lombard AP, D’Abronzo LS, Evans CP et al (2019) AKR1C3 promotes AR-v7 protein stabilization and confers resistance to AR-targeted therapies in advanced prostate cancer. Mol Cancer Ther 18:1875–1886. https://doi.org/10.1158/1535-7163.Mct-18-1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Garofalo C, Sisci D, Surmacz E (2004) Leptin interferes with the effects of the antiestrogen ICI 182,780 in MCF-7 breast cancer cells. Clin Cancer Res 10:6466–6475. https://doi.org/10.1158/1078-0432.Ccr-04-0203

    Article  CAS  PubMed  Google Scholar 

  174. Paranjpe A, Bailey NI, Konduri S, Bobustuc GC, Ali-Osman F, Yusuf MA, Punganuru SR, Madala HR, Basak D, Mostofa A et al (2016) New insights into estrogenic regulation of O(6)-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: co-degradation of ER-α and MGMT proteins by fulvestrant or O(6)-benzylguanine indicates fresh avenues for therapy. J Biomed Res 30:393–410. https://doi.org/10.7555/jbr.30.20160040

    Article  PubMed  PubMed Central  Google Scholar 

  175. Li Y, Orahoske CM, Urmetz SM, Zhang W, Huang Y, Gan C, Su B (2022) Identification of estrogen receptor down-regulators for endocrine resistant breast cancer. J Steroid Biochem Mol Biol 224. https://doi.org/10.1016/j.jsbmb.2022.106162

  176. Hu J, Hu B, Wang M, Xu F, Miao B, Yang C-Y, Wang M, Liu Z, Hayes DF, Chinnaswamy K et al (2019) Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J Med Chem 62:1420–1442. https://doi.org/10.1021/acs.jmedchem.8b01572

    Article  CAS  PubMed  Google Scholar 

  177. Luo G, Li X, Lin X, Lu X, Li Z, Xiang H (2022) Novel 11 beta-substituted estradiol conjugates: transition from ER alpha agonists to effective PROTAC degraders. J Steroid Biochem Mol Biol 223. https://doi.org/10.1016/j.jsbmb.2022.106154

  178. Hoffmann J, Bohlmann R, Heinrich N, Hofmeister H, Kroll J, Kunzer H, Lichtner RB, Nishino Y, Parczyk K, Sauer G et al (2004) Characterization of new estrogen receptor destabilizing compounds: effects on estrogen-sensitive and tamoxifen-resistant breast cancer. J Natl Cancer Inst 96:210–218. https://doi.org/10.1093/jnci/djh022

    Article  CAS  PubMed  Google Scholar 

  179. Anderson NA, Cryan J, Ahmed A, Dai H, McGonagle GA, Rozier C, Benowitz AB (2020) Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs. Bioorganic Med Chem Lett 30. https://doi.org/10.1016/j.bmcl.2020.127106

  180. Su S, Yang Z, Gao H, Yang H, Zhu S, An Z, Wang J, Li Q, Chandarlapaty S, Deng H et al (2019) Potent and preferential degradation of CDK6 via proteolysis targeting chimera degraders. J Med Chem 62:7575–7582. https://doi.org/10.1021/acs.jmedchem.9b00871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Porazzi P, De Dominici M, Salvino J, Calabretta B (2021) Targeting the CDK6 dependence of Ph plus acute lymphoblastic leukemia. Genes 12. https://doi.org/10.3390/genes12091355

  182. Zhao M, Hu M, Chen Y, Liu H, Chen Y, Liu B, Fang B (2021) Cereblon modulator CC-885 induces CRBN-dependent ubiquitination and degradation of CDK4 in multiple myeloma. Biochem Biophys Res Commun 549:150–156. https://doi.org/10.1016/j.bbrc.2021.02.110

    Article  CAS  PubMed  Google Scholar 

  183. Sun B, Fiskus W, Qian Y, Rajapakshe K, Raina K, Coleman KG, Crew AP, Shen A, Saenz DT, Mill CP et al (2018) BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia 32:343–352. https://doi.org/10.1038/leu.2017.207

    Article  CAS  PubMed  Google Scholar 

  184. Udden SN, Wang Q, Kumar S, Malladi VS, Wu S-Y, Wei S, Posner BA, Geboers S, Williams NS, Liu Y et al (2022) Targeting ESR1 mutation-induced transcriptional addiction in breast cancer with BET inhibition. JCI Insight 7. https://doi.org/10.1172/jci.insight.151851

  185. Weng L, Ziliak D, Im HK, Gamazon ER, Philips S, Nguyen AT, Desta Z, Skaar TC, Flockhart DA, Huang RS et al (2013) Genome-wide discovery of genetic variants affecting tamoxifen sensitivity and their clinical and functional validation. Ann Oncol 24:1867–1873. https://doi.org/10.1093/annonc/mdt125

    Article  CAS  PubMed  Google Scholar 

  186. Liang Y, Song X, Li Y, Ma T, Su P, Guo R, Chen B, Zhang H, Sang Y, Liu Y et al (2019) Targeting the circBMPR2/miR-553/USP4 axis as a potent therapeutic approach for breast cancer. Molecular Therapy-Nucleic Acids 17:347–361. https://doi.org/10.1016/j.omtn.2019.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Oosterkamp HM, Hijmans EM, Brummelkamp TR, Canisius S, Wessels LFA, Zwart W, Bernards R (2014) USP9X downregulation renders breast cancer cells resistant to tamoxifen. Can Res 74:3810–3820. https://doi.org/10.1158/0008-5472.Can-13-1960

    Article  CAS  Google Scholar 

  188. Gao L, Zhang W, Zhang J, Liu J, Sun F, Liu H, Hu J, Wang X, Wang X, Su P et al (2021) KIF15-mediated stabilization of AR and AR-V7 contributes to enzalutamide resistance in prostate cancer. Cancer Res 81:1026–1039. https://doi.org/10.1158/0008-5472.Can-20-1965

    Article  CAS  PubMed  Google Scholar 

  189. Liu Z, Liu C, Yan K, Liu J, Fang Z, Fan Y (2021) Huaier extract inhibits prostate cancer growth via targeting AR/AR-V7 pathway. Front Oncol 11:615568. https://doi.org/10.3389/fonc.2021.615568

  190. Liu Y, Yu C, Shao Z, Xia X, Hu T, Kong W, He X, Sun W, Deng Y, Liao Y et al (2021) Selective degradation of AR-V7 to overcome castration resistance of prostate cancer. Cell Death Dis 12:857. https://doi.org/10.1038/s41419-021-04162-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhang B, Zhang M, Shen C, Liu G, Zhang F, Hou J, Yao W (2021) LncRNA PCBP1-AS1-mediated AR/AR-V7 deubiquitination enhances prostate cancer enzalutamide resistance. Cell Death Dis 12:856. https://doi.org/10.1038/s41419-021-04144-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cui SZ, Lei ZY, Guan TP, Fan LL, Li YQ, Geng XY, Fu DX, Jiang HW, Xu SH (2020) Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy. Cancer Sci 111:1567–1581. https://doi.org/10.1111/cas.14375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. de Las PA, Reiner T, De Cesare V, Trost M, Perez-Stable C (2018) Inhibiting multiple deubiquitinases to reduce androgen receptor expression in prostate cancer cells. Sci Rep 8:13146. https://doi.org/10.1038/s41598-018-31567-3

    Article  CAS  Google Scholar 

  194. Gong L, He D, Cao K, Hu Y, Zhong M (2019) Molecular mechanism of ubiquitin ligase regulating cisplatin sensitivity. Bull Chin Cancer 28:46–49

    Google Scholar 

  195. Wang Y, Guo A, Liang X, Li M, Shi M, Li Y, Jenkins G, Lin X, Wei X, Jia Z et al (2017) HRD1 sensitizes breast cancer cells to tamoxifen by promoting S100A8 degradation. Oncotarget 8:23564–23574. https://doi.org/10.18632/oncotarget.15797

    Article  PubMed  PubMed Central  Google Scholar 

  196. Kim Y-J, Lee G, Han J, Song K, Choi J-S, Choi Y-L, Shin YK (2020) UBE2C overexpression aggravates patient outcome by promoting estrogen-dependent/independent cell proliferation in early hormone receptor-positive and HER2-negative breast cancer. Front Oncol 9. https://doi.org/10.3389/fonc.2019.01574

  197. Yin H, Zhu Q, Liu M, Tu G, Li Q, Yuan J, Wen S, Yang G (2017) GPER promotes tamoxifen-resistance in ER+ breast cancer cells by reduced Bim proteins through MAPK/Erk-TRIM2 signaling axis. Int J Oncol 51:1191–1198. https://doi.org/10.3892/ijo.2017.4117

    Article  CAS  PubMed  Google Scholar 

  198. Xing L, Tang X, Wu K, Huang X, Yi Y, Huan J (2020) TRIM27 functions as a novel oncogene in non-triple-negative breast cancer by blocking cellular senescence through p21 ubiquitination. Mol Ther Nucleic Acids 22:910–923. https://doi.org/10.1016/j.omtn.2020.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rawat A, Gopal G, Selvaluxmy G, Rajkumar T (2013) Inhibition of ubiquitin conjugating enzyme UBE2C reduces proliferation and sensitizes breast cancer cells to radiation, doxorubicin, tamoxifen and letrozole. Cell Oncol 36:459–467. https://doi.org/10.1007/s13402-013-0150-8

    Article  CAS  Google Scholar 

  200. Yang Y, Zhao J, Mao Y, Lin G, Li F, Jiang Z (2020) UBR5 over-expression contributes to poor prognosis and tamoxifen resistance of ERa plus breast cancer by stabilizing beta-catenin. Breast Cancer Res Treat 184:699–710. https://doi.org/10.1007/s10549-020-05899-6

    Article  CAS  PubMed  Google Scholar 

  201. Azuma K, Ikeda K, Suzuki T, Aogi K, Horie-Inoue K, Inoue S, Mak TW (2021) TRIM47 activates NF-KB signaling via PKC-c/PKD3 stabilization and contributes to endocrine therapy resistance in breast cancer. Proc National Acad Sci USA 118. https://doi.org/10.1073/pnas.2100784118|1of9

  202. Wang Y, Pan X, Li Y, Wang R, Yang Y, Jiang B, Sun G, Shao C, Wang M, Gong Y (2021) CUL4B renders breast cancer cells tamoxifen-resistant via miR-32-5p/ER-alpha 36 axis. J Pathol 254:185–198. https://doi.org/10.1002/path.5657

    Article  CAS  PubMed  Google Scholar 

  203. Vatapalli R, Sagar V, Rodriguez Y, Zhao JC, Unno K, Pamarthy S, Lysy B, Anker J, Han H, Yoo YA et al (2020) Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Nat Commun 11:4153. https://doi.org/10.1038/s41467-020-18013-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang Z, Cheng L, Li J, Farah E, Atallah NM, Pascuzzi PE, Gupta S, Liu X (2018) Inhibition of the Wnt/β-catenin pathway overcomes resistance to enzalutamide in castration-resistant prostate cancer. Cancer Res 78:3147–3162. https://doi.org/10.1158/0008-5472.Can-17-3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Tan Q, Liu Z, Gao X, Wang Y, Qiu X, Chen J, Liang L, Guo H, Huang S, Wu D et al (2022) Celastrol recruits UBE3A to recognize and degrade the DNA binding domain of steroid receptors. Oncogene 41:4754–4767. https://doi.org/10.1038/s41388-022-02467-8

    Article  CAS  PubMed  Google Scholar 

  206. Ponnusamy S, He Y, Hwang DJ, Thiyagarajan T, Houtman R, Bocharova V, Sumpter BG, Fernandez E, Johnson D, Du Z et al (2019) Orally bioavailable androgen receptor degrader, potential next-generation therapeutic for enzalutamide-resistant prostate cancer. Clin Cancer Res 25:6764–6780. https://doi.org/10.1158/1078-0432.Ccr-19-1458

    Article  CAS  PubMed  Google Scholar 

  207. Auvin S, Öztürk H, Abaci YT, Mautino G, Meyer-Losic F, Jollivet F, Bashir T, de Thé H, Sahin U (2019) A molecule inducing androgen receptor degradation and selectively targeting prostate cancer cells. Life Sci Alliance 2. https://doi.org/10.26508/lsa.201800213

  208. Khurana N, Kim H, Chandra PK, Talwar S, Sharma P, Abdel-Mageed AB, Sikka SC, Mondal D (2017) Multimodal actions of the phytochemical sulforaphane suppress both AR and AR-V7 in 22Rv1 cells: advocating a potent pharmaceutical combination against castration-resistant prostate cancer. Oncol Rep 38:2774–2786. https://doi.org/10.3892/or.2017.5932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chou FJ, Lin C, Tian H, Lin W, You B, Lu J, Sahasrabudhe D, Huang CP, Yang V, Yeh S et al (2020) Preclinical studies using cisplatin/carboplatin to restore the Enzalutamide sensitivity via degrading the androgen receptor splicing variant 7 (ARv7) to further suppress Enzalutamide resistant prostate cancer. Cell Death Dis 11:942. https://doi.org/10.1038/s41419-020-02970-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Paranjpe A, Bailey NI, Konduri S, Bobustuc GC, Ali-Osman F, Yusuf MA, Punganuru SR, Madala HR, Basak D, Mostofa A et al (2016) New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: co-degradation of ER-alpha and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy. J Biomed Res 30:393–410. https://doi.org/10.7555/jbr.30.20160040

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the 2022 General Program-Education Department of Zhejiang Province (Y202249882), the National Natural Science Foundation of China (32270821), the Natural Science Foundation of Ningbo (Grant No. 2021J065), the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. SJLZ2022004), and the K.C. Wong Magna Fund in the Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

Yidong Ge and Ziqing Zhan drafted the manuscript. Xiaofeng Jin and Meng Ye made substantial contributions to the interpretation, drafting the study, and revising it critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Meng Ye or Xiaofeng Jin.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Zhan, Z., Ye, M. et al. The crosstalk between ubiquitination and endocrine therapy. J Mol Med 101, 461–486 (2023). https://doi.org/10.1007/s00109-023-02300-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02300-z

Keywords

Navigation