Skip to main content
Log in

Elevation of hsa-miR-7-5p level mediated by CtBP1-p300-AP1 complex targets ATXN1 to trigger NF-κB-dependent inflammation response

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Nuclear factor-κB (NF-κB)–mediated inflammation is a major cause of acute respiratory distress syndrome (ARDS). However, the regulatory mechanisms by which NF-κB transactivates proinflammatory cytokines remain unclear in the pathogenesis of ARDS. Herein, we report that the activating protein 1 (AP1) transcription factor recruits a histone acetyltransferase p300 and a transcriptional regulator C-terminal binding protein 1 (CtBP1) to assemble the CtBP1-p300-AP1 complex, which transactivates the expression of hsa-miR-7-5p in ARDS biopsies. Overexpressed hsa-miR-7-5p binds to the three prime untranslated regions (3′-UTRs) of ataxin 1 (ATXN1), suppressing its expression. Decreased ATXN1 expression relieves its repression of NF-κB, causing the induction of proinflammatory cytokine genes and triggering an inflammatory response. Depletion of CtBP1 or treatments with two CtBP1 inhibitors (NSC95397 and 4-methylthio-2-oxobutanoate (MTOB)) in human macrophages impairs the assembly of the CtBP2-p300-AP1 complex, resulting in decreased hsa-miR-7-5p levels, upregulation of ATXN1, and attenuation of proinflammatory cytokines. A similar regulatory mechanism was observed in lipopolysaccharide-treated mice. Our results reveal that increased hsa-miR-7-5p level mediated by the CtBP1-p300-AP1 complex targets ATXN1 to trigger an NF-κB-dependent inflammatory response. Interfering with this signaling pathway to block the inflammatory response may be a strategy for treating ARDS.

Key messages

  • The transcription factor AP1 recruits p300 and CtBP1 to form a transcriptional complex, which transactivates the expression of hsa-miR-7-5p in ARDS biopsies.

  • Overexpressed hsa-miR-7-5p binds to the 3′-UTR of ATXN1, suppressing its expression.

  • The decreased ATXN1 impaired its suppression of NF-κB, causing the induction of proinflammatory cytokine genes and triggering inflammation response.

  • Disruption of the assembly of CtBP2-p300-AP1 complex upregulates ATXN1 and attenuates inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The date sets used and analyzed during the current study are available from the corresponding author upon request.

References

  1. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A et al (2019) Acute respiratory distress syndrome. Nat Rev Dis Primers 5:18

    Article  PubMed  Google Scholar 

  2. Matthay MA, Zemans RL (2011) The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol 6:147–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu T, Zhang L, Joo D, Sun SC (2017) NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2:17023

    Article  PubMed  PubMed Central  Google Scholar 

  5. McKay LI, Cidlowski JA (2000) CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism. Mol Endocrinol 14:1222–1234

    CAS  PubMed  Google Scholar 

  6. Mukherjee SP, Behar M, Birnbaum HA, Hoffmann A, Wright PE, Ghosh G (2013) Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-kappaB-driven transcription. PLoS Biol 11:e1001647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vanden Berghe W, De Bosscher K, Boone E, Plaisance S, Haegeman G (1999) The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J Biol Chem 274:32091–32098

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Zhang W, Zhang Q, Song T, Yu Z, Li Z et al (2020) NSM00158 specifically disrupts the CtBP2-p300 interaction to reverse CtBP2-mediated transrepression and prevent the occurrence of nonunion. Mol Cells 43:517–529

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Quinlan KG, Verger A, Kwok A, Lee SH, Perdomo J, Nardini M et al (2006) Role of the C-terminal binding protein PXDLS motif binding cleft in protein interactions and transcriptional repression. Mol Cell Biol 26:8202–8213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Z (2021) The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases. J Mol Med (Berl) 99:1335–1347

    Article  CAS  PubMed  Google Scholar 

  11. Boxer LD, Barajas B, Tao S, Zhang J, Khavari PA (2014) ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev 28:2013–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Postigo AA, Dean DC (1999) ZEB represses transcription through interaction with the corepressor CtBP. Proc Natl Acad Sci U S A 96:6683–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Vliet J, Turner J, Crossley M (2000) Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 28:1955–1962

    Article  PubMed  Google Scholar 

  14. Ray SK, Li HJ, Metzger E, Schule R, Leiter AB (2014) CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol 34:2308–2317

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang X, Du K, Lou Z, Ding K, Zhang F, Zhu J et al (2019) The CtBP1-HDAC1/2-IRF1 transcriptional complex represses the expression of the long noncoding RNA GAS5 in human osteosarcoma cells. Int J Biol Sci 15:1460–1471

    Article  CAS  PubMed  Google Scholar 

  16. Shi Y, Sawada J, Sui G, el Affar B, Whetstine JR, Lan F et al (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422:735–738

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Dong WH, Chen Q, Li QG, Qiu ZM (2019) Downregulation of miR-199a-3p mediated by the CtBP2-HDAC1-FOXP3 transcriptional complex contributes to acute lung injury by targeting NLRP1. Int J Biol Sci 15:2627–2640

    Article  CAS  PubMed  Google Scholar 

  18. Korwar S, Morris BL, Parikh HI, Coover RA, Doughty TW, Love IM et al (2016) Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP). Bioorg Med Chem 24:2707–2715

    Article  CAS  PubMed  Google Scholar 

  19. Blevins MA, Kouznetsova J, Krueger AB, King R, Griner LM, Hu X et al (2015) Small molecule, NSC95397, inhibits the CtBP1-protein partner interaction and CtBP1-mediated transcriptional repression. J Biomol Screen 20:663–672

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Z, Liang L, Zhang R, Wei Y, Su L, Tejera P et al (2017) Whole blood microRNA markers are associated with acute respiratory distress syndrome. Intensive Care Med Exp 5:38

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cai ZG, Zhang SM, Zhang Y, Zhou YY, Wu HB, Xu XP (2012) MicroRNAs are dynamically regulated and play an important role in LPS-induced lung injury. Can J Physiol Pharmacol 90:37–43

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Qiu X, Jiang H, Han Y, Wei D, Liu J (2016) Downregulation of miR-181a protects mice from LPS-induced acute lung injury by targeting Bcl-2. Biomed Pharmacother 84:1375–1382

    Article  CAS  PubMed  Google Scholar 

  23. Nayak DK, Mendez O, Bowen S, Mohanakumar T (2018) Isolation and in vitro culture of murine and human alveolar macrophages. J Vis Exp 20:57287

    Google Scholar 

  24. Tsang M, Gantchev J, Ghazawi FM, Litvinov IV (2017) Protocol for adhesion and immunostaining of lymphocytes and other non-adherent cells in culture. Biotechniques 63:230–233

    Article  PubMed  Google Scholar 

  25. Crespo-Barreto J, Fryer JD, Shaw CA, Orr HT, Zoghbi HY (2010) Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis. PLoS Genet 6:e1001021

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chopra R, Bushart DD, Cooper JP, Yellajoshyula D, Morrison LM, Huang H et al (2020) Altered Capicua expression drives regional Purkinje neuron vulnerability through ion channel gene dysregulation in spinocerebellar ataxia type 1. Hum Mol Genet 29:3249–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iorio MV, Croce CM (2012) Causes and consequences of microRNA dysregulation. Cancer J 18:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402

    Article  CAS  PubMed  Google Scholar 

  29. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61:24R-R29

    Article  CAS  PubMed  Google Scholar 

  30. Morales S, Monzo M, Navarro A (2017) Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts 8:203–212

    Article  CAS  PubMed  Google Scholar 

  31. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38

    Article  CAS  PubMed  Google Scholar 

  32. Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fang Y, Xue JL, Shen Q, Chen J, Tian L (2012) MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology 55:1852–1862

    Article  CAS  PubMed  Google Scholar 

  34. Giles KM, Brown RA, Ganda C, Podgorny MJ, Candy PA, Wintle LC et al (2016) microRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-kappaB. Oncotarget 7:31663–31680

    Article  PubMed  PubMed Central  Google Scholar 

  35. Okuda H, Xing F, Pandey PR, Sharma S, Watabe M, Pai SK et al (2013) miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 73:1434–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a grant (20212BAB206057, assigned to Dr. Zhi Chen) from the Natural Science Foundation of Jiangxi Province, China.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Li-Qiong Lou and Dr. Zhi Chen designed the experiments and wrote the manuscript. Dr. Zhi Chen performed the major parts of the experiments (detection of microRNA and gene expression levels, western blots, Co-IP, IP, and ChIP). Wen-Qiang Zhou and Xin Song helped cell culture, constructed vectors, and generated cell lines.

Corresponding author

Correspondence to Zhi Chen.

Ethics declarations

Ethics approval and consent to participate

The animal experiments were performed in accordance with a protocol (ARDS202111-2) reviewed and approved by the Institutional Animal Care and Use Committee of Jiangxi Provincial Hospital. The human lung tissue collection and BAL fluid collection were performed following a protocol (ARDS20091B) reviewed and approved by the Ethics Committee of Jiangxi Provincial People’s Hospital. All participants signed the written consent reviewed and approved by the Ethics Committee of Jiangxi Provincial People’s Hospital.

Consent for publication

All authors have agreed to publish this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43210 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, LQ., Zhou, WQ., Song, X. et al. Elevation of hsa-miR-7-5p level mediated by CtBP1-p300-AP1 complex targets ATXN1 to trigger NF-κB-dependent inflammation response. J Mol Med 101, 223–235 (2023). https://doi.org/10.1007/s00109-022-02274-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02274-4

Keywords

Navigation