Skip to main content

Advertisement

Log in

TGF-β1/Smad3 upregulates UCA1 to promote liver fibrosis through DKK1 and miR18a

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

TGF‐β1 is the strongest cytokine known to promote liver fibrosis. It has been previously demonstrated that the activation of TGF‐β1 initiates a temporary collagen accumulation program, which is important for wound repair in several organs. Furthermore, temporary extracellular matrix enhancement often leads to progressive fibrosis, which is accountable for cases of severe morbidity and mortality worldwide. However, its action mechanism has not been fully explored. It was previously reported that UCA1 could promote its occurrence and development in various tumors. Importantly, it was reported that TGF‐β1 could activate the expression of UCA1 in liver cancer, gastric cancer, and breast cancer. However, the role of UCA1 in organ fibrosis, including liver fibrosis, remains unreported. The present study reported for the first time that TGF‐β1/Smad3 could promote liver fibrosis by upregulating UCA1, which further affected DKK1 and collagen, such as COL1A1, COL1A2, and COL3A1. Meanwhile, UCA1 could competitively bind with miR18a to stabilize Smad3 to constitute a positive feedback pathway, which played a significant role in the promotion of liver fibrosis. Altogether, the present study provides a theoretical basis for devising promising treatment strategies for liver fibrosis.

Key messages

  • UCA1 was found to promote the progression of liver fibrosis in vitro.

  • UCA1 is regulated by TGF-β1 and promotes liver fibrosis through the canonical Smad pathway.

  • UCA1 can competitively bind with miR18a, promote liver fibrosis by stabilizing Smad3, and form a UCA1-miR18a/Smad3 positive feedback.

  • UCA1 binds EZH2 to inhibit the DKK1 expression and promote liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Song L, Chen TY, Zhao XJ et al (2019) Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-β1/Smads signalling. Br J Pharmacol 176:1619–1634. https://doi.org/10.1111/bph.14573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boutanquoi PM, Burgy O, Beltramo G et al (2020) TRIM33 prevents pulmonary fibrosis by impairing TGF-β1 signalling. Eur Respir J 11:1901346. https://doi.org/10.1183/13993003.01346-2019

    Article  CAS  Google Scholar 

  3. Loboda A, Sobczak M, Jozkowicz A et al (2016) TGF-β1/Smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm 2016:8319283. https://doi.org/10.1155/2016/8319283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Henderson NC, Rieder F, Wynn TA (2020) Fibrosis: from mechanisms to medicines. Nature 587:555–566. https://doi.org/10.1038/s41586-020-2938-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wrana JL, Attisano L, Wieser R et al (1994) Mechanism of activation of the TGF-β receptor. Nature 370:341–347. https://doi.org/10.1038/370341a0

    Article  CAS  PubMed  Google Scholar 

  6. Kim KK, Sheppard D, Chapman HA (2018) TGF-β1 signaling and tissue fibrosis. Cold Spring Harb Perspect Biol 10:a022293. https://doi.org/10.1101/cshperspect.a022293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei Y, Kim TJ, Peng DH et al (2017) Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J Clin Invest 127:3675–3688. https://doi.org/10.1172/JCI94624

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhao X, Kwan JYY, Yip K et al (2020) Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov 19:57–75. https://doi.org/10.1038/s41573-019-0040-5

    Article  CAS  PubMed  Google Scholar 

  9. Hu ML, Wang XY, Chen WM (2018) TGF-β1 upregulates the expression of lncRNA UCA1 and its downstream HXK2 to promote the growth of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 22:4846–4854. https://doi.org/10.26355/eurrev_201808_15620

    Article  PubMed  Google Scholar 

  10. Zuo ZK, Gong Y, Chen XH et al (2017) TGFβ1-induced LncRNA UCA1 upregulation promotes gastric cancer invasion and migration. DNA Cell Biol 36:159–167. https://doi.org/10.1089/dna.2016.3553

    Article  CAS  PubMed  Google Scholar 

  11. Li GY, Wang W, Sun JY et al (2018) Long non-coding RNAs AC026904.1 and UCA1: a “one-two punch” for TGF-β-induced SNAI2 activation and epithelial-mesenchymal transition in breast cancer. Theranostics 8:2846–2861. https://doi.org/10.7150/thno.23463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bian EB, Wang YY, Yang Y et al (2017) Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver. Biochim Biophys Acta Mol Basis Dis 1863:674–686. https://doi.org/10.1016/j.bbadis.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  13. Yu F, Chen B, Fan X et al (2017) Epigenetically-regulated microRNA-9-5p suppresses the activation of hepatic stellate cells via TGFBR1 and TGFBR2. Cell Physiol Biochem 43:2242–2252. https://doi.org/10.1159/000484303

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Chen XX, Li WX et al (2017) EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis. J Cell Mol Med 21:2317–2328. https://doi.org/10.1111/jcmm.13153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu T, Yan S, Wang M, Jiang L et al (2020) LncRNA UCA1 induces acquired resistance to gefitinib by epigenetically silencing CDKN1A expression in non-small-cell lung cancer. Front Oncol 10:656. https://doi.org/10.3389/fonc.2020.00656

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hu JJ, Song W, Zhang SD et al (2016) HBx-upregulated lncRNA UCA1 promotes cell growth and tumorigenesis by recruiting EZH2 and repressing p27Kip1/CDK2 signaling. Sci Rep 6:23521. https://doi.org/10.1038/srep23521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He X, Wang J, Chen J et al (2019) lncRNA UCA1 predicts a poor prognosis and regulates cell proliferation and migration by repressing p21 and SPRY1 expression in GC. Mol Ther Nucleic Acids 18:605–616. https://doi.org/10.1016/j.omtn.2019.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cai Q, Jin L, Wang S et al (2017) Long non-coding RNA UCA1 promotes gallbladder cancer progression by epigenetically repressing p21 and E-cadherin expression. Oncotarget 8:47957–47968. https://doi.org/10.18632/oncotarget

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thiele BJ, Doller A, Kähne T et al (2004) RNA-binding proteins heterogeneous nuclear ribonucleoprotein A1, E1, and K are involved in post-transcriptional control of collagen I and III synthesis. Circ Res 95:1058–1066. https://doi.org/10.1161/01.RES.0000149166.33833.08

    Article  CAS  PubMed  Google Scholar 

  20. Roderburg C, Urban GW, Bettermann K et al (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53:209–218. https://doi.org/10.1002/hep.23922

    Article  CAS  PubMed  Google Scholar 

  21. Sekiya Y, Ogawa T, Yoshizato K et al (2011) Suppression of hepatic stellate cell activation by microRNA-29b. Biochem Biophys Res Commun 412:74–79. https://doi.org/10.1016/j.bbrc.2011.07.041

    Article  CAS  PubMed  Google Scholar 

  22. Huang YH, Yang YL, Wang FS (2018) The role of miR-29a in the regulation, function, and signaling of liver fibrosis. Int J Mol Sci 19:1889. https://doi.org/10.3390/ijms19071889

    Article  CAS  PubMed Central  Google Scholar 

  23. Wang X, He Y, Mackowiak B et al (2021) MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 70:784–795. https://doi.org/10.1136/gutjnl-2020-322526

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Wu Y, Liu A et al (2016) Long non-coding RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1α feedback regulatory loop. Tumour Biol 37:14733–14743. https://doi.org/10.1007/s13277-016-5348-8

    Article  CAS  PubMed  Google Scholar 

  25. Kolenda T, Guglas K, Kopczyńska M et al (2020) Good or not good: role of miR-18a in cancer biology. Rep Pract Oncol Radiother 25:808–819. https://doi.org/10.1016/j.rpor.2020.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu P, Li Z, Wang Y, Yu X et al (2020) miR-18a Contributes to preeclampsia by downregulating Smad2 (full length) and reducing TGF-β signaling. Mol Ther Nucleic Acids 22:542–556. https://doi.org/10.1016/j.omtn.2020.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lian C, Tao T, Su P et al (2020) Targeting miR-18a sensitizes chondrocytes to anticytokine therapy to prevent osteoarthritis progression. Cell Death Dis 11:947. https://doi.org/10.1038/s41419-020-03155-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338. https://doi.org/10.1038/nrneph.2016.48

    Article  CAS  PubMed  Google Scholar 

  29. Hata A, Chen YG (2016) TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 8:a022061. https://doi.org/10.1101/cshperspect.a022061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang K, Han X, Zhang Z et al (2017) The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat Commun 8:144. https://doi.org/10.1038/s41467-017-00204-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klavdianou K, Liossis SN, Daoussis D (2017) Dkk1: a key molecule in joint remodelling and fibrosis. Mediterr J Rheumatol 28:174–182. https://doi.org/10.31138/mjr.28.4.174

    Article  PubMed  PubMed Central  Google Scholar 

  32. Akhmetshina A, Palumbo K, Dees C et al (2012) Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 3:735. https://doi.org/10.1038/ncomms1734

    Article  CAS  PubMed  Google Scholar 

  33. Liu Z, Wang Y, Yuan S et al (2021) Regulatory role of long non-coding RNA UCA1 in signaling pathways and its clinical applications. Oncol Lett 21:404. https://doi.org/10.3892/ol.2021.12665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo X, Zhang Y, Mayakonda A et al (2018) ARID1A and CEBPα cooperatively inhibit UCA1 transcription in breast cancer. Oncogene 37:5939–5951. https://doi.org/10.1038/s41388-018-0371-4

    Article  CAS  PubMed  Google Scholar 

  35. Wu W, Zhang S, Li X et al (2013) Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS ONE 8:e73920. https://doi.org/10.1371/journal.pone.0073920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang ZQ, Cai Q, Hu L et al (2017) Long noncoding RNA UCA1 induced by SP1 promotes cell proliferation via recruiting EZH2 and activating AKT pathway in gastric cancer. Cell Death Dis 8:e2839. https://doi.org/10.1038/cddis.2017.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cui X, Zhao C, Yao X et al (2018) SND1 acts as an anti-apoptotic factor via regulating the expression of lncRNA UCA1 in hepatocellular carcinoma. RNA Biol 15:1364–1375. https://doi.org/10.1080/15476286.2018.1534525

    Article  PubMed  PubMed Central  Google Scholar 

  38. He H, Mennone A, Boyer JL et al (2011) Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct-ligated rats and human hepatic cells. Hepatology 53:548–557. https://doi.org/10.1002/hep.24047

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (grant numbers 81770283, 82070302, 81902018, 81903001, and 81772926); Clinical Medical Research Center of Peritoneal Cancer of Wuhan (grant number 2015060911020462); Natural Science Foundation of Hubei Province (grant numbers 2019CFB109 and 2020CFB708); Technology and Innovation Seed Fund, Zhongnan Hospital of Wuhan University (grant number znpy2018004); and Medical Sci-Tech Innovation Platform, Zhongnan Hospital of Wuhan University (grant number PTXM2021022).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: ZS.Y. and B.L.; development of methodology: ZS.Y., H.Z., and MH.Y.; acquisition of data: ZS.Y., MH.Y., ZX.C., and P.J.; analysis of data: ZS.Y., MH.F., B.L., and ZS.L.; writing, review, and/or revision of the manuscript: ZS.Y., H.Z., B.L., MH.F., and ZS.L. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Maohui Feng, Zhisu Liu or Bo Liao.

Ethics declarations

Ethics approval and consent to participate

The tissues collected in this paper have passed the ethical approval of Wuhan University Zhongnan Hospital. This study conforms to the ethical guidelines of the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15050 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhang, H., Yin, M. et al. TGF-β1/Smad3 upregulates UCA1 to promote liver fibrosis through DKK1 and miR18a. J Mol Med 100, 1465–1478 (2022). https://doi.org/10.1007/s00109-022-02248-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02248-6

Keywords

Navigation