Skip to main content

Adhesion G protein-coupled receptor gluing action guides tissue development and disease

Abstract

Phylogenetic analysis of human G protein-coupled receptors (GPCRs) divides these transmembrane signaling proteins into five groups: glutamate, rhodopsin, adhesion, frizzled, and secretin families, commonly abbreviated as the GRAFS classification system. The adhesion GPCR (aGPCR) sub-family comprises 33 different receptors in humans. Majority of the aGPCRs are orphan receptors with unknown ligands, structures, and tissue expression profiles. They have a long N-terminal extracellular domain (ECD) with several adhesion sites similar to integrin receptors. Many aGPCRs undergo autoproteolysis at the GPCR proteolysis site (GPS), enclosed within the larger GPCR autoproteolysis inducing (GAIN) domain. Recent breakthroughs in aGPCR research have created new paradigms for understanding their roles in organogenesis. They play crucial roles in multiple aspects of organ development through cell signaling, intercellular adhesion, and cell–matrix associations. They are involved in essential physiological processes like regulation of cell polarity, mitotic spindle orientation, cell adhesion, and migration. Multiple aGPCRs have been associated with the development of the brain, musculoskeletal system, kidneys, cardiovascular system, hormone secretion, and regulation of immune functions. Since aGPCRs have crucial roles in tissue patterning and organogenesis, mutations in these receptors are often associated with diseases with loss of tissue integrity. Thus, aGPCRs include a group of enigmatic receptors with untapped potential for elucidating novel signaling pathways leading to drug discovery. We summarized the current knowledge on how aGPCRs play critical roles in organ development and discussed how aGPCR mutations/genetic variants cause diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Since no datasets were used in this manuscript, data sharing policies are not applicable.

References

  1. Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H et al (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88:263–273

    CAS  PubMed  Article  Google Scholar 

  2. Hauser AS, Chavali S, Masuho I, Jahn LJ et al (2018) Pharmacogenomics of GPCR drug targets. Cell 172(41–54):e19

    Google Scholar 

  3. Schioth HB, Fredriksson R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol 142:94–101

    PubMed  Article  CAS  Google Scholar 

  4. Baud V, Chissoe SL, Viegas-Pequignot E, Diriong S et al (1995) EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments. Genomics 26:334–344

    CAS  PubMed  Article  Google Scholar 

  5. de la Lastra JM, Shahein YE, Garrido JJ, Llanes D (2003) Molecular cloning and structural analysis of the porcine homologue to CD97 antigen. Vet Immunol Immunopathol 93:107–115

    PubMed  Article  CAS  Google Scholar 

  6. Krasnoperov VG, Bittner MA, Beavis R, Kuang Y et al (1997) alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18:925–937

    CAS  PubMed  Article  Google Scholar 

  7. Lelianova VG, Davletov BA, Sterling A, Rahman MA et al (1997) Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem 272:21504–21508

    CAS  PubMed  Article  Google Scholar 

  8. Usui T, Shima Y, Shimada Y, Hirano S et al (1999) Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98:585–595

    CAS  PubMed  Article  Google Scholar 

  9. Nishimori H, Shiratsuchi T, Urano T, Kimura Y et al (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150

    CAS  PubMed  Article  Google Scholar 

  10. Scholz N, Langenhan T, Schoneberg T (2019) Revisiting the classification of adhesion GPCRs. Ann N Y Acad Sci 1456:80–95

    PubMed  PubMed Central  Article  Google Scholar 

  11. Krasnoperov V, Lu Y, Buryanovsky L, Neubert TA et al (2002) Post-translational proteolytic processing of the calcium-independent receptor of alpha-latrotoxin (CIRL), a natural chimera of the cell adhesion protein and the G protein-coupled receptor. Role of the G protein-coupled receptor proteolysis site (GPS) motif. J Biol Chem 277:46518–46526

    CAS  PubMed  Article  Google Scholar 

  12. Lin HH, Chang GW, Davies JQ, Stacey M et al (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279:31823–31832

    CAS  PubMed  Article  Google Scholar 

  13. Arac D, Boucard AA, Bolliger MF, Nguyen J et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31:1364–1378

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Guan C, Cui T, Rao V, Liao W et al (1996) Activation of glycosylasparaginase. Formation of active N-terminal threonine by intramolecular autoproteolysis. J Biol Chem 271:1732–1737

    CAS  PubMed  Article  Google Scholar 

  15. Xu Q, Buckley D, Guan C, Guo HC (1999) Structural insights into the mechanism of intramolecular proteolysis. Cell 98:651–661

    CAS  PubMed  Article  Google Scholar 

  16. Chang GW, Stacey M, Kwakkenbos MJ, Hamann J et al (2003) Proteolytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPS motif. FEBS Lett 547:145–150

    CAS  PubMed  Article  Google Scholar 

  17. Volynski KE, Silva JP, Lelianova VG, Rahman A et al (2004) Latrophilin fragments behave as independent proteins that associate and signal on binding of LTX(N4C). EMBO J 23:4423–4433

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Silva JP, Lelianova V, Hopkins C, Volynski KE et al (2009) Functional cross-interaction of the fragments produced by the cleavage of distinct adhesion G-protein-coupled receptors. J Biol Chem 284:6495–6506

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Kishore A, Hall RA (2016) Versatile signaling activity of adhesion GPCRs. Handb Exp Pharmacol 234:127–146

    CAS  PubMed  Article  Google Scholar 

  20. Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A 112:6194–6199

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Liebscher I, Schon J, Petersen SC, Fischer L et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Henderson DJ, Long DA, Dean CH (2018) Planar cell polarity in organ formation. Curr Opin Cell Biol 55:96–103

    CAS  PubMed  Article  Google Scholar 

  23. Strutt D, Schnabel R, Fiedler F, Promel S (2016) Adhesion GPCRs govern polarity of epithelia and cell migration. Handb Exp Pharmacol 234:249–274

    CAS  PubMed  Article  Google Scholar 

  24. Curtin JA, Quint E, Tsipouri V, Arkell RM et al (2003) Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 13:1129–1133

    CAS  PubMed  Article  Google Scholar 

  25. Langenhan T, Promel S, Mestek L, Esmaeili B et al (2009) Latrophilin signaling links anterior-posterior tissue polarity and oriented cell divisions in the C. elegans embryo. Dev Cell 17:494–504

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Muller A, Winkler J, Fiedler F, Sastradihardja T et al (2015) Oriented cell division in the C. elegans embryo is coordinated by G-protein signaling dependent on the adhesion GPCR LAT-1. PLoS Genet 11:e1005624

  27. Langenhan T, Piao X, Monk KR (2016) Adhesion G protein-coupled receptors in nervous system development and disease. Nat Rev Neurosci 17:550–561

    CAS  PubMed  Article  Google Scholar 

  28. Nagar B, Overduin M, Ikura M, Rini JM (1996) Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380:360–364

    CAS  PubMed  Article  Google Scholar 

  29. Nishimura T, Honda H, Takeichi M (2012) Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149:1084–1097

    CAS  PubMed  Article  Google Scholar 

  30. Li S, Jin Z, Koirala S, Bu L et al (2008) GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci 28:5817–5826

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Chiang NY, Hsiao CC, Huang YS, Chen HY et al (2011) Disease-associated GPR56 mutations cause bilateral frontoparietal polymicrogyria via multiple mechanisms. J Biol Chem 286:14215–14225

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Tissir F, Goffinet AM (2013) Shaping the nervous system: role of the core planar cell polarity genes. Nat Rev Neurosci 14:525–535

    CAS  PubMed  Article  Google Scholar 

  33. Ying G, Wu S, Hou R, Huang W et al (2009) The protocadherin gene Celsr3 is required for interneuron migration in the mouse forebrain. Mol Cell Biol 29:3045–3061

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Qu Y, Huang Y, Feng J, Alvarez-Bolado G et al (2014) Genetic evidence that Celsr3 and Celsr2, together with Fzd3, regulate forebrain wiring in a Vangl-independent manner. Proc Natl Acad Sci U S A 111:E2996-3004

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Ackerman SD, Garcia C, Piao X, Gutmann DH et al (2015) The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Galpha12/13 and RhoA. Nat Commun 6:6122

    CAS  PubMed  Article  Google Scholar 

  36. Monk KR, Naylor SG, Glenn TD, Mercurio S et al (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Monk KR, Oshima K, Jors S, Heller S et al (2011) Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 138:2673–2680

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Ackerman SD, Luo R, Poitelon Y, Mogha A et al (2018) GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. J Exp Med 215:941–961

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Mogha A, Benesh AE, Patra C, Engel FB et al (2013) Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J Neurosci 33:17976–17985

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Sigoillot SM, Iyer K, Binda F, Gonzalez-Calvo I et al (2015) The secreted protein C1QL1 and its receptor BAI3 control the synaptic connectivity of excitatory inputs converging on cerebellar Purkinje cells. Cell Rep 10:820–832

    CAS  PubMed  Article  Google Scholar 

  41. Kakegawa W, Mitakidis N, Miura E, Abe M et al (2015) Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85:316–329

    CAS  PubMed  Article  Google Scholar 

  42. Bottos A, Rissone A, Bussolino F, Arese M (2011) Neurexins and neuroligins: synapses look out of the nervous system. Cell Mol Life Sci 68:2655–2666

    CAS  PubMed  Article  Google Scholar 

  43. Kenzelmann D, Chiquet-Ehrismann R, Leachman NT, Tucker RP (2008) Teneurin-1 is expressed in interconnected regions of the developing brain and is processed in vivo. BMC Dev Biol 8:30

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Lise MF, El-Husseini A (2006) The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci 63:1833–1849

    CAS  PubMed  Article  Google Scholar 

  45. Lu YC, Nazarko OV, Sando R 3rd, Salzman GS et al (2015) Structural basis of latrophilin-FLRT-UNC5 interaction in cell adhesion. Structure 23:1678–1691

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Dark C, Homman-Ludiye J, Bryson-Richardson RJ (2018) The role of ADHD associated genes in neurodevelopment. Dev Biol 438:69–83

    CAS  PubMed  Article  Google Scholar 

  47. Lange M, Norton W, Coolen M, Chaminade M et al (2012) The ADHD-linked gene Lphn3.1 controls locomotor activity and impulsivity in zebrafish. Mol Psychiatry 17:855

  48. Wallis D, Hill DS, Mendez IA, Abbott LC et al (2012) Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction. Brain Res 1463:85–92

    CAS  PubMed  Article  Google Scholar 

  49. Piao X, Chang BS, Bodell A, Woods K et al (2005) Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann Neurol 58:680–687

    CAS  PubMed  Article  Google Scholar 

  50. Piao X, Hill RS, Bodell A, Chang BS et al (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–2036

    CAS  PubMed  Article  Google Scholar 

  51. Piao X, Basel-Vanagaite L, Straussberg R, Grant PE et al (2002) An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16q12.2-21. Am J Hum Genet 70:1028–1033

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Lei Y, Zhu H, Yang W, Ross ME et al (2014) Identification of novel CELSR1 mutations in spina bifida. PLoS ONE 9:e92207

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Qiao X, Liu Y, Li P, Chen Z et al (2016) Genetic analysis of rare coding mutations of CELSR1-3 in congenital heart and neural tube defects in Chinese people. Clin Sci (Lond) 130:2329–2340

    CAS  Article  Google Scholar 

  54. Robinson A, Escuin S, Doudney K, Vekemans M et al (2012) Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 33:440–447

    CAS  PubMed  Article  Google Scholar 

  55. Arcos-Burgos M, Jain M, Acosta MT, Shively S et al (2010) A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry 15:1053–1066

    CAS  PubMed  Article  Google Scholar 

  56. Labbe A, Liu A, Atherton J, Gizenko N et al (2012) Refining psychiatric phenotypes for response to treatment: contribution of LPHN3 in ADHD. Am J Med Genet B Neuropsychiatr Genet 159B:776–785

    PubMed  Article  CAS  Google Scholar 

  57. Choudhry Z, Sengupta SM, Grizenko N, Fortier ME et al (2012) LPHN3 and attention-deficit/hyperactivity disorder: interaction with maternal stress during pregnancy. J Child Psychol Psychiatry 53:892–902

    PubMed  Article  Google Scholar 

  58. Kappel DB, Schuch JB, Rovaris DL, da Silva BS et al (2019) ADGRL3 rs6551665 as a common vulnerability factor underlying attention-deficit/hyperactivity disorder and autism spectrum disorder. Neuromolecular Med 21:60–67

    CAS  PubMed  Article  Google Scholar 

  59. Huang X, Zhang Q, Gu X, Hou Y et al (2019) LPHN3 gene variations and susceptibility to ADHD in Chinese Han population: a two-stage case-control association study and gene-environment interactions. Eur Child Adolesc Psychiatry 28:861–873

    PubMed  Article  Google Scholar 

  60. Bonaglia MC, Marelli S, Novara F, Commodaro S et al (2010) Genotype-phenotype relationship in three cases with overlapping 19p13.12 microdeletions. Eur J Hum Genet 18:1302–1309

    PubMed  PubMed Central  Article  Google Scholar 

  61. Willsey AJ, Fernandez TV, Yu D, King RA et al (2017) De novo coding variants are strongly associated with Tourette disorder. Neuron 94(486–499):e9

    Google Scholar 

  62. Wang S, Mandell JD, Kumar Y, Sun N et al (2018) De novo sequence and copy number variants are strongly associated with Tourette disorder and implicate cell polarity in pathogenesis. Cell Rep 24(3441–3454):e12

    Article  CAS  Google Scholar 

  63. DeRosse P, Lencz T, Burdick KE, Siris SG et al (2008) The genetics of symptom-based phenotypes: toward a molecular classification of schizophrenia. Schizophr Bull 34:1047–1053

    PubMed  PubMed Central  Article  Google Scholar 

  64. Purcell RH, Toro C, Gahl WA, Hall RA (2017) A disease-associated mutation in the adhesion GPCR BAI2 (ADGRB2) increases receptor signaling activity. Hum Mutat 38:1751–1760

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Myers KA, Nasioulas S, Boys A, McMahon JM et al (2018) ADGRV1 is implicated in myoclonic epilepsy. Epilepsia 59:381–388

    CAS  PubMed  Article  Google Scholar 

  66. Weston MD, Luijendijk MW, Humphrey KD, Moller C et al (2004) Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am J Hum Genet 74:357–366

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Patra C, Monk KR, Engel FB (2014) The multiple signaling modalities of adhesion G protein-coupled receptor GPR126 in development. Receptors Clin Investig 1:79

    PubMed  PubMed Central  Google Scholar 

  68. Patra C, van Amerongen MJ, Ghosh S, Ricciardi F et al (2013) Organ-specific function of adhesion G protein-coupled receptor GPR126 is domain-dependent. Proc Natl Acad Sci U S A 110:16898–16903

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Waller-Evans H, Promel S, Langenhan T, Dixon J et al (2010) The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLoS ONE 5:e14047

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Torregrosa-Carrion R, Pineiro-Sabaris R, Siguero-Alvarez M, Grego-Bessa J et al (2021) Adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for placental development. Sci Adv 7:eabj5445

  71. O'Donnell A, Yutzey KE (2020) Mechanisms of heart valve development and disease. Development 147

  72. Doyle SE, Scholz MJ, Greer KA, Hubbard AD et al (2006) Latrophilin-2 is a novel component of the epithelial-mesenchymal transition within the atrioventricular canal of the embryonic chicken heart. Dev Dyn 235:3213–3221

    CAS  PubMed  Article  Google Scholar 

  73. Nechiporuk T, Urness LD, Keating MT (2001) ETL, a novel seven-transmembrane receptor that is developmentally regulated in the heart. ETL is a member of the secretin family and belongs to the epidermal growth factor-seven-transmembrane subfamily. J Biol Chem 276:4150–4157

    CAS  PubMed  Article  Google Scholar 

  74. Xiao J, Jiang H, Zhang R, Fan G et al (2012) Augmented cardiac hypertrophy in response to pressure overload in mice lacking ELTD1. PLoS ONE 7:e35779

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Musa G, Engel FB, Niaudet C (2016) Heart development, angiogenesis, and blood-brain barrier function is modulated by adhesion GPCRs. Handb Exp Pharmacol 234:351–368

    CAS  PubMed  Article  Google Scholar 

  76. Scholz N, Gehring J, Guan C, Ljaschenko D et al (2015) The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep 11:866–874

    CAS  PubMed  Article  Google Scholar 

  77. Scholz N, Guan C, Nieberler M, Grotemeyer A et al (2017) Mechano-dependent signaling by latrophilin/CIRL quenches cAMP in proprioceptive neurons. Elife 6

  78. Jakob Mitgau JF, Schinner C, Stephan G, Berndt S et al (2021) Mimicking extracellular matrix-mediated mechano-activation by antibodies to control signaling of the adhesion G protein-coupled receptor GPR126/ADGRG6. https://www.biorxiv.org/content/10.1101/2021.09.13.460127v1

  79. Stephan G, Liebscher I, Placantonakis DG (2021) Activation of the adhesion GPCR GPR133 (ADGRD1) by antibodies targeting the N-terminus. https://www.biorxiv.org/content/10.1101/2021.09.13.460139v1.full

  80. Cui H, Wang Y, Huang H, Yu W et al (2014) GPR126 protein regulates developmental and pathological angiogenesis through modulation of VEGFR2 receptor signaling. J Biol Chem 289:34871–34885

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. Stehlik C, Kroismayr R, Dorfleutner A, Binder BR et al (2004) VIGR–a novel inducible adhesion family G-protein coupled receptor in endothelial cells. FEBS Lett 569:149–155

    CAS  PubMed  Article  Google Scholar 

  82. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    CAS  PubMed  Article  Google Scholar 

  83. Paik DT, Tian L, Williams IM, Rhee S et al (2020) Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells. Circulation 142:1848–1862

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Nolan DJ, Ginsberg M, Israely E, Palikuqi B et al (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26:204–219

    CAS  PubMed  Article  Google Scholar 

  85. Lu S, Liu S, Wietelmann A, Kojonazarov B et al (2017) Developmental vascular remodeling defects and postnatal kidney failure in mice lacking Gpr116 (Adgrf5) and Eltd1 (Adgrl4). PLoS ONE 12:e0183166

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412

    PubMed  PubMed Central  Article  Google Scholar 

  87. Cullen M, Elzarrad MK, Seaman S, Zudaire E et al (2011) GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc Natl Acad Sci U S A 108:5759–5764

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Kuhnert F, Mancuso MR, Shamloo A, Wang HT et al (2010) Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330:985–989

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Yasukochi Y, Sakuma J, Takeuchi I, Kato K et al (2018) Six novel susceptibility loci for coronary artery disease and cerebral infarction identified by longitudinal exome-wide association studies in a Japanese population. Biomed Rep 9:123–134

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yamada Y, Kato K, Oguri M, Horibe H et al (2018) Identification of 13 novel susceptibility loci for early-onset myocardial infarction, hypertension, or chronic kidney disease. Int J Mol Med 42:2415–2436

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu MP, Doyle JR, Barry B, Beauvais A et al (2013) G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo. FEBS J 280:6097–6113

    CAS  PubMed  Article  Google Scholar 

  92. White JP (2016) Control of skeletal muscle cell growth and size through adhesion GPCRs. Handb Exp Pharmacol 234:299–308

    CAS  PubMed  Article  Google Scholar 

  93. Hamoud N, Tran V, Croteau LP, Kania A et al (2014) G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proc Natl Acad Sci U S A 111:3745–3750

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Zyryanova T, Schneider R, Adams V, Sittig D et al (2014) Skeletal muscle expression of the adhesion-GPCR CD97: CD97 deletion induces an abnormal structure of the sarcoplasmatic reticulum but does not impair skeletal muscle function PLoS One 9:e100513

  95. Karner CM, Long F, Solnica-Krezel L, Monk KR et al (2015) Gpr126/Adgrg6 deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. Hum Mol Genet 24:4365–4373

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Wu S, Sun X, Zhu W, Huang Y et al (2012) Evidence for GAL3ST4 mutation as the potential cause of pectus excavatum. Cell Res 22:1712–1715

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Kou I, Takahashi Y, Johnson TA, Takahashi A et al (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45:676–679

    CAS  PubMed  Article  Google Scholar 

  98. Khanshour AM, Kou I, Fan Y, Einarsdottir E et al (2018) Genome-wide meta-analysis and replication studies in multiple ethnicities identify novel adolescent idiopathic scoliosis susceptibility loci. Hum Mol Genet 27:3986–3998

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Kou I, Watanabe K, Takahashi Y, Momozawa Y et al (2018) A multi-ethnic meta-analysis confirms the association of rs6570507 with adolescent idiopathic scoliosis. Sci Rep 8:11575

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. Qin X, Xu L, Xia C, Zhu W et al (2017) Genetic variant of GPR126 gene is functionally associated with adolescent idiopathic scoliosis in Chinese population. Spine (Phila Pa 1976) 42:E1098-E1103

  101. Ravenscroft G, Nolent F, Rajagopalan S, Meireles AM et al (2015) Mutations of GPR126 are responsible for severe arthrogryposis multiplex congenita. Am J Hum Genet 96:955–961

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. Kitagaki J, Miyauchi S, Asano Y, Imai A et al (2016) A putative association of a single nucleotide polymorphism in GPR126 with aggressive periodontitis in a Japanese population. PLoS ONE 11:e0160765

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Yates LL, Schnatwinkel C, Murdoch JN, Bogani D et al (2010) The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Hum Mol Genet 19:2251–2267

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Yates LL, Papakrivopoulou J, Long DA, Goggolidou P et al (2010) The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Hum Mol Genet 19:4663–4676

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Brzoska HL, d’Esposito AM, Kolatsi-Joannou M, Patel V et al (2016) Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney Int 90:1274–1284

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Wang XJ, Zhang DL, Xu ZG, Ma ML et al (2014) Understanding cadherin EGF LAG seven-pass G-type receptors. J Neurochem 131:699–711

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Zaidman NA, Tomilin VN, Hassanzadeh Khayyat N, Damarla M et al (2020) Adhesion-GPCR Gpr116 (ADGRF5) expression inhibits renal acid secretion. Proc Natl Acad Sci U S A 117:26470–26481

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Cazorla-Vazquez S, Engel FB (2018) Adhesion GPCRs in kidney development and disease. Front Cell Dev Biol 6:9

    PubMed  PubMed Central  Article  Google Scholar 

  109. Pradervand S, Zuber Mercier A, Centeno G, Bonny O et al (2010) A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Pflugers Arch 460:925–952

    CAS  PubMed  Article  Google Scholar 

  110. Harty BL, Krishnan A, Sanchez NE, Schioth HB et al (2015) Defining the gene repertoire and spatiotemporal expression profiles of adhesion G protein-coupled receptors in zebrafish. BMC Genomics 16:62

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. Qian YM, Haino M, Kelly K, Song WC (1999) Structural characterization of mouse CD97 and study of its specific interaction with the murine decay-accelerating factor (DAF, CD55). Immunology 98:303–311

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Maiga A, Lemieux S, Pabst C, Lavallee VP et al (2016) Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets. Blood Cancer J 6:e431

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS, de Pater E et al (2015) Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J Exp Med 212:93–106

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. Wang W, Jossin Y, Chai G, Lien WH et al (2016) Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat Commun 7:10936

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. Posokhova E, Shukla A, Seaman S, Volate S et al (2015) GPR124 functions as a WNT7-specific coactivator of canonical beta-catenin signaling. Cell Rep 10:123–130

    CAS  PubMed  Article  Google Scholar 

  116. Li X, Roszko I, Sepich DS, Ni M et al (2013) Gpr125 modulates Dishevelled distribution and planar cell polarity signaling. Development 140:3028–3039

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. Scheller M, Huelsken J, Rosenbauer F, Taketo MM et al (2006) Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol 7:1037–1047

    CAS  PubMed  Article  Google Scholar 

  118. Reya T (2003) Regulation of hematopoietic stem cell self-renewal. Recent Prog Horm Res 58:283–295

    CAS  PubMed  Article  Google Scholar 

  119. Daga S, Rosenberger A, Quehenberger F, Krisper N et al (2019) High GPR56 surface expression correlates with a leukemic stem cell gene signature in CD34-positive AML. Cancer Med 8:1771–1778

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. Das S, Owen KA, Ly KT, Park D et al (2011) Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc Natl Acad Sci U S A 108:2136–2141

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Park D, Tosello-Trampont AC, Elliott MR, Lu M et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434

    CAS  PubMed  Article  Google Scholar 

  122. Lee CS, Penberthy KK, Wheeler KM, Juncadella IJ et al (2016) Boosting apoptotic cell clearance by colonic epithelial cells attenuates inflammation in vivo. Immunity 44:807–820

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Mazaheri F, Breus O, Durdu S, Haas P et al (2014) Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nat Commun 5:4046

    CAS  PubMed  Article  Google Scholar 

  124. Wandel E, Saalbach A, Sittig D, Gebhardt C et al (2012) Thy-1 (CD90) is an interacting partner for CD97 on activated endothelial cells. J Immunol 188:1442–1450

    CAS  PubMed  Article  Google Scholar 

  125. Hamann J, Vogel B, van Schijndel GM, van Lier RA (1996) The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 184:1185–1189

    CAS  PubMed  Article  Google Scholar 

  126. Wang T, Ward Y, Tian L, Lake R et al (2005) CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105:2836–2844

    CAS  PubMed  Article  Google Scholar 

  127. Kop EN, Kwakkenbos MJ, Teske GJ, Kraan MC et al (2005) Identification of the epidermal growth factor-TM7 receptor EMR2 and its ligand dermatan sulfate in rheumatoid synovial tissue. Arthritis Rheum 52:442–450

    CAS  PubMed  Article  Google Scholar 

  128. Hoek RM, de Launay D, Kop EN, Yilmaz-Elis AS et al (2010) Deletion of either CD55 or CD97 ameliorates arthritis in mouse models. Arthritis Rheum 62:1036–1042

    CAS  PubMed  Article  Google Scholar 

  129. Sutavani RV, Bradley RG, Ramage JM, Jackson AM et al (2013) CD55 costimulation induces differentiation of a discrete T regulatory type 1 cell population with a stable phenotype. J Immunol 191:5895–5903

    CAS  PubMed  Article  Google Scholar 

  130. Legrand F, Tomasevic N, Simakova O, Lee CC et al (2014) The eosinophil surface receptor epidermal growth factor-like module containing mucin-like hormone receptor 1 (EMR1): a novel therapeutic target for eosinophilic disorders. J Allergy Clin Immunol 133:1439–47, 1447 e1–8

  131. Boyden SE, Desai A, Cruse G, Young ML et al (2016) Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med 374:656–663

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Iguchi T, Sakata K, Yoshizaki K, Tago K et al (2008) Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 283:14469–14478

    CAS  PubMed  Article  Google Scholar 

  133. Luo R, Jeong SJ, Jin Z, Strokes N et al (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108:12925–12930

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. Yeung J, Adili R, Stringham EN, Luo R et al (2020) GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force. Proc Natl Acad Sci U S A 117:28275–28286

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. Bridges JP, Ludwig MG, Mueller M, Kinzel B et al (2013) Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size. Am J Respir Cell Mol Biol 49:348–357

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. Yang MY, Hilton MB, Seaman S, Haines DC et al (2013) Essential regulation of lung surfactant homeostasis by the orphan G protein-coupled receptor GPR116. Cell Rep 3:1457–1464

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. Haitina T, Olsson F, Stephansson O, Alsio J et al (2008) Expression profile of the entire family of adhesion G protein-coupled receptors in mouse and rat. BMC Neurosci 9:43

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  138. Ludwig MG, Seuwen K, Bridges JP (2016) Adhesion GPCR function in pulmonary development and disease. Handb Exp Pharmacol 234:309–327

    CAS  PubMed  Article  Google Scholar 

  139. Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF et al (2019) Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet 51:494–505

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. Hall RJ, O’Loughlin J, Billington CK, Thakker D et al (2021) Functional genomics of GPR126 in airway smooth muscle and bronchial epithelial cells. FASEB J 35:e21300

    CAS  PubMed  Article  Google Scholar 

  141. O’Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW et al (2013) The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 13:412–424

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. Kan Z, Jaiswal BS, Stinson J, Janakiraman V et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873

    CAS  PubMed  Article  Google Scholar 

  143. Aust G, Eichler W, Laue S, Lehmann I et al (1997) CD97: a dedifferentiation marker in human thyroid carcinomas. Cancer Res 57:1798–1806

    CAS  PubMed  Google Scholar 

  144. Zendman AJ, Cornelissen IM, Weidle UH, Ruiter DJ et al (1999) TM7XN1, a novel human EGF-TM7-like cDNA, detected with mRNA differential display using human melanoma cell lines with different metastatic potential. FEBS Lett 446:292–298

    CAS  PubMed  Article  Google Scholar 

  145. Nallanthighal S, Heiserman JP, Cheon DJ (2019) The role of the extracellular matrix in cancer stemness. Front Cell Dev Biol 7:86

    PubMed  PubMed Central  Article  Google Scholar 

  146. Kaur B, Brat DJ, Devi NS, Van Meir EG (2005) Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24:3632–3642

    CAS  PubMed  Article  Google Scholar 

  147. Kaur B, Cork SM, Sandberg EM, Devi NS et al (2009) Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. Cancer Res 69:1212–1220

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Aust G, Zhu D, Van Meir EG, Xu L (2016) Adhesion GPCRs in tumorigenesis. Handb Exp Pharmacol 234:369–396

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Safaee M, Clark AJ, Oh MC, Ivan ME et al (2013) Overexpression of CD97 confers an invasive phenotype in glioblastoma cells and is associated with decreased survival of glioblastoma patients. PLoS ONE 8:e62765

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  150. Li J, Shen J, Wang Z, Xu H et al (2019) ELTD1 facilitates glioma proliferation, migration and invasion by activating JAK/STAT3/HIF-1alpha signaling axis. Sci Rep 9:13904

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. Izutsu T, Konda R, Sugimura J, Iwasaki K et al (2011) Brain-specific angiogenesis inhibitor 1 is a putative factor for inhibition of neovascular formation in renal cell carcinoma. J Urol 185:2353–2358

    CAS  PubMed  Article  Google Scholar 

  152. Inamura K (2017) Renal cell tumors: understanding their molecular pathological epidemiology and the 2016 WHO Classification. Int J Mol Sci 18

  153. Low G, Huang G, Fu W, Moloo Z et al (2016) Review of renal cell carcinoma and its common subtypes in radiology. World J Radiol 8:484–500

    PubMed  PubMed Central  Article  Google Scholar 

  154. Shingarev R, Jaimes EA (2017) Renal cell carcinoma: new insights and challenges for a clinician scientist. Am J Physiol Renal Physiol 313:F145–F154

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Richter GH, Fasan A, Hauer K, Grunewald TG et al (2013) G-protein coupled receptor 64 promotes invasiveness and metastasis in Ewing sarcomas through PGF and MMP1. J Pathol 230:70–81

    CAS  PubMed  Article  Google Scholar 

  156. Masiero M, Simoes FC, Han HD, Snell C et al (2013) A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell 24:229–241

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. Hatanaka H, Oshika Y, Abe Y, Yoshida Y et al (2000) Vascularization is decreased in pulmonary adenocarcinoma expressing brain-specific angiogenesis inhibitor 1 (BAI1). Int J Mol Med 5:181–183

    CAS  PubMed  Google Scholar 

  158. Bari MF, Brown H, Nicholson AG, Kerr KM et al (2014) BAI3, CDX2 and VIL1: a panel of three antibodies to distinguish small cell from large cell neuroendocrine lung carcinomas. Histopathology 64:547–556

    PubMed  Article  Google Scholar 

  159. Olaniru OE, Persaud SJ (2019) Adhesion G-protein coupled receptors: Implications for metabolic function. Pharmacol Ther 198:123–134

    CAS  PubMed  Article  Google Scholar 

  160. Cortijo C, Gouzi M, Tissir F, Grapin-Botton A (2012) Planar cell polarity controls pancreatic beta cell differentiation and glucose homeostasis. Cell Rep 2:1593–1606

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. Korpos E, Kadri N, Kappelhoff R, Wegner J et al (2013) The peri-islet basement membrane, a barrier to infiltrating leukocytes in type 1 diabetes in mouse and human. Diabetes 62:531–542

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. Blodgett DM, Nowosielska A, Afik S, Pechhold S et al (2015) Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64:3172–3181

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Huang Y, Fan J, Yang J, Zhu GZ (2008) Characterization of GPR56 protein and its suppressed expression in human pancreatic cancer cells. Mol Cell Biochem 308:133–139

    CAS  PubMed  Article  Google Scholar 

  164. Olaniru OE, Pingitore A, Giera S, Piao X et al (2018) The adhesion receptor GPR56 is activated by extracellular matrix collagen III to improve beta-cell function. Cell Mol Life Sci 75:4007–4019

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. Duner P, Al-Amily IM, Soni A, Asplund O et al (2016) Adhesion G protein-coupled receptor G1 (ADGRG1/GPR56) and pancreatic beta-cell function. J Clin Endocrinol Metab 101:4637–4645

    CAS  PubMed  Article  Google Scholar 

  166. Rothe J, Thor D, Winkler J, Knierim AB et al (2019) Involvement of the adhesion GPCRs latrophilins in the regulation of insulin release. Cell Rep 26(1573–1584):e5

    Google Scholar 

  167. Gupta R, Nguyen DC, Schaid MD, Lei X et al (2018) Complement 1q-like-3 protein inhibits insulin secretion from pancreatic beta-cells via the cell adhesion G protein-coupled receptor BAI3. J Biol Chem 293

  168. Suchy T, Zieschang C, Popkova Y, Kaczmarek I et al (2020) The repertoire of adhesion G protein-coupled receptors in adipocytes and their functional relevance. Int J Obes (Lond) 44:2124–2136

    CAS  Article  Google Scholar 

  169. Nie T, Hui X, Gao X, Li K et al (2012) Adipose tissue deletion of Gpr116 impairs insulin sensitivity through modulation of adipose function. FEBS Lett 586:3618–3625

    CAS  PubMed  Article  Google Scholar 

  170. Georgiadi A, Lopez-Salazar V, Merahbi RE, Karikari RA et al (2021) Orphan GPR116 mediates the insulin sensitizing effects of the hepatokine FNDC4 in adipose tissue. Nat Commun 12:2999

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  171. Bradley EC, Cunningham RL, Wilde C, Morgan RK et al (2019) In vivo identification of small molecules mediating Gpr126/Adgrg6 signaling during Schwann cell development. Ann N Y Acad Sci 1456:44–63

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. Gupte J, Swaminath G, Danao J, Tian H et al (2012) Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett 586:1214–1219

    CAS  PubMed  Article  Google Scholar 

  173. Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL et al (2013) Screening beta-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. J Biomol Screen 18:599–609

    PubMed  Article  CAS  Google Scholar 

  174. Stoveken HM, Larsen SD, Smrcka AV, Tall GG (2018) Gedunin- and khivorin-derivatives are small-molecule partial agonists for adhesion G protein-coupled receptors GPR56/ADGRG1 and GPR114/ADGRG5. Mol Pharmacol 93:477–488

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. Stoveken HM, Bahr LL, Anders MW, Wojtovich AP et al (2016) Dihydromunduletone is a small-molecule selective adhesion G protein-coupled receptor antagonist. Mol Pharmacol 90:214–224

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. Demberg LM, Winkler J, Wilde C, Simon KU et al (2017) Activation of adhesion G protein-coupled receptors: agonist specificity of stachel sequence-derived peptides. J Biol Chem 292:4383–4394

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  177. Sun Y, Zhang D, Ma ML, Lin H et al (2021) Optimization of a peptide ligand for the adhesion GPCR ADGRG2 provides a potent tool to explore receptor biology. J Biol Chem 296:100174

    CAS  PubMed  Article  Google Scholar 

  178. Demberg LM, Rothemund S, Schoneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464:743–747

    CAS  PubMed  Article  Google Scholar 

  179. Barros-Alvarez X, Nwokonko RM, Vizurraga A, Matzov D et al (2022) The tethered peptide activation mechanism of adhesion GPCRs. Nature 604:757–762

    CAS  PubMed  Article  Google Scholar 

  180. Ping YQ, Xiao P, Yang F, Zhao RJ et al (2022) Structural basis for the tethered peptide activation of adhesion GPCRs. Nature 604:763–770

    CAS  PubMed  Article  Google Scholar 

  181. Qu X, Qiu N, Wang M, Zhang B et al (2022) Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1. Nature 604:779–785

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. Xiao P, Guo S, Wen X, He QT et al (2022) Tethered peptide activation mechanism of the adhesion GPCRs ADGRG2 and ADGRG4. Nature 604:771–778

    CAS  PubMed  Article  Google Scholar 

  183. Jo M, Jung ST (2016) Engineering therapeutic antibodies targeting G-protein-coupled receptors. Exp Mol Med 48:e207

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  184. Yona S, Lin HH, Dri P, Davies JQ et al (2008) Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB J 22:741–751

    CAS  PubMed  Article  Google Scholar 

  185. Lizano E, Hayes JL, Willard FS (2021) A synthetic method to assay adhesion-family G-protein coupled receptors. Determination of the G-protein coupling profile of ADGRG6(GPR126). Biochem Biophys Res Commun 534:317–322

    CAS  PubMed  Article  Google Scholar 

  186. Mathiasen S, Palmisano T, Perry NA, Stoveken HM et al (2020) G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3. Nat Chem Biol 16:1343–1350

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This work was supported by a Ramalingaswamy fellowship from the Department of Biotechnology, India and intramural funding from Ashoka University to KP.

Author information

Authors and Affiliations

Authors

Contributions

AS, MT, and KP wrote the manuscript. KP prepared figures and edited the manuscript.

Corresponding author

Correspondence to Kasturi Pal.

Ethics declarations

Ethics approval

Content in this manuscript did not require ethics approval as there were no animals or human subjects involved in the study.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 143 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sreepada, A., Tiwari, M. & Pal, K. Adhesion G protein-coupled receptor gluing action guides tissue development and disease. J Mol Med 100, 1355–1372 (2022). https://doi.org/10.1007/s00109-022-02240-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02240-0

Keywords

  • G protein-coupled receptors
  • Autoproteolysis
  • GAIN domain
  • Extracellular matrix