Skip to main content
Log in

Identification of KANSL1 as a novel pathogenic gene for developmental dysplasia of the hip

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Developmental dysplasia of the hip (DDH) is a common anomaly leading to adult osteoarthritis. Environmental and genetic factors contribute to DDH, but its exact genetic mechanism is unclear. In this study, we used whole exome sequencing to identify the causative gene of a DDH pedigree. A rare missense variant in KANSL1 (c.C767T; p.S256F) was identified as the pathogenic cause of DDH. Subsequent mutation screening showed another missense variant in 1 of 200 sporadic patients. Kansl1-mutated mice showed reduced chondrocytes in the acetabulum and a decrease in the cartilage matrix, which may be DDH phenotype-related abnormalities. Furthermore, functional studies showed that cell proliferation was delayed and Mmp13 expression was abnormally upregulated in chondrocytes differentiated from Kansl1 mutant mouse embryonic stem cells. In conclusion, our findings suggest that KANSL1 is a novel pathogenic gene for DDH. The identification of KANSL1 variants has great diagnostic value for identifying individuals with DDH.

Key messages

  • Developmental dysplasia of the hip (DDH) is a common anomaly causing adult osteoarthritis. Environmental and genetic factors contribute to DDH, but its exact genetic mechanism is unclear.

  • Using high-throughput whole exome sequencing, we found a novel variant in KANSL1 that was co-inherited by all severely affected individuals diagnosed with DDH from a three-generation family. Further analysis revealed that a Kansl1 variant in mice reduced the number of chondrocytes and decreased cartilage matrix, and mouse embryonic stem differentiation assay showed cartilage defects.

  • These findings indicate a direct association between KANSL1 and hip development, expanding the pathogenic gene spectrum in DDH and providing insight into potential new targets for diagnosing and treating hip dysplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data used during the study are available from the corresponding author on reasonable request.

References

  1. Schaeffer EK, Study Group I, Mulpuri K (2018) Developmental dysplasia of the hip: addressing evidence gaps with a multicentre prospective international study. Med J Aust 208:359–364. https://doi.org/10.5694/mja18.00154

    Article  PubMed  Google Scholar 

  2. Laurence M, Harper PS, Harris R, Nevin NC, Roberts DF (1987) Report of the delegation of clinical geneticists to China, Spring 1986. Biol Soc 4:61–77

    CAS  PubMed  Google Scholar 

  3. Rubini M, Cavallaro A, Calzolari E, Bighetti G, Sollazzo V (2008) Exclusion of COL2A1 and VDR as developmental dysplasia of the hip genes. Clin Orthop Relat Res 466:878–883. https://doi.org/10.1007/s11999-008-0120-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dezateux C, Rosendahl K (2007) Developmental dysplasia of the hip. Lancet 369:1541–1552. https://doi.org/10.1016/S0140-6736(07)60710-7

    Article  PubMed  Google Scholar 

  5. Wilkinson JA (1992) Etiologic factors in congenital displacement of the hip and myelodysplasia. Clin Orthop Relat Res 75–83

  6. Harsanyi S, Zamborsky R, Kokavec M, Danisovic L (2020) Genetics of developmental dysplasia of the hip. Eur J Med Genet 63:103990. https://doi.org/10.1016/j.ejmg.2020.103990

    Article  PubMed  Google Scholar 

  7. Woodacre T, Ball T, Cox P (2016) Epidemiology of developmental dysplasia of the hip within the UK: refining the risk factors. J Child Orthop 10:633–642. https://doi.org/10.1007/s11832-016-0798-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stevenson DA, Mineau G, Kerber RA, Viskochil DH, Schaefer C, Roach JW (2009) Familial predisposition to developmental dysplasia of the hip. J Pediatr Orthop 29:463–466. https://doi.org/10.1097/BPO.0b013e3181aa586b

    Article  PubMed  Google Scholar 

  9. Feldman G, Kappes D, Mookerjee-Basu J, Freeman T, Fertala A, Parvizi J (2019) Novel mutation in Teneurin 3 found to co-segregate in all affecteds in a multi-generation family with developmental dysplasia of the hip. J Orthop Res 37:171–180. https://doi.org/10.1002/jor.24148

    Article  CAS  PubMed  Google Scholar 

  10. Xu X, Wang B, Chen Y, Zhou W, Li L (2021) Replicative verification of susceptibility genes previously identified from families with segregating developmental dysplasia of the hip. Ital J Pediatr 47:140. https://doi.org/10.1186/s13052-021-01087-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu LQ, Su GH, Dai J, Zhang WY, Yin CH, Zhang FY, Zhu ZH, Guo ZX, Fang JF, Zou CD et al (2019) Whole genome sequencing of pairwise human subjects reveals DNA mutations specific to developmental dysplasia of the hip. Genomics 111:320–326. https://doi.org/10.1016/j.ygeno.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  12. Liu S, Tian W, Wang J, Cheng L, Jia J, Ma X (2014) Two single-nucleotide polymorphisms in the DKK1 gene are associated with developmental dysplasia of the hip in the Chinese Han female population. Genet Test Mol Biomarkers 18:557–561. https://doi.org/10.1089/gtmb.2014.0044

    Article  CAS  PubMed  Google Scholar 

  13. Xu RJ, Zhang F, Lu JL, Wang KX, Pan P, Sun Y, Zhang YX (2021) Secreted frizzled-related protein 3 was genetically and functionally associated with developmental dysplasia of the hip. Aging 13:11281–11295. https://doi.org/10.18632/aging.202815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harsanyi S, Zamborsky R, Krajciova L, Kokavec M, Danisovic L (2021) Genetic study of IL6, GDF5 and PAPPA2 in association with developmental dysplasia of the hip. Genes (Basel). https://doi.org/10.3390/genes12070986

    Article  Google Scholar 

  15. Gumus E, Temiz E, Sarikaya B, Yuksekdag O, Sipahioglu S, Gonel A (2021) The association between BMP-2, UQCC1 and CX3CR1 polymorphisms and the risk of developmental dysplasia of the hip. Indian J Orthop 55:169–175. https://doi.org/10.1007/s43465-020-00235-y

    Article  PubMed  Google Scholar 

  16. Bohacek I, Plecko M, Duvancic T, Smoljanovic T, Vukasovic Barisic A, Delimar D (2020) Current knowledge on the genetic background of developmental dysplasia of the hip and the histomorphological status of the cartilage. Croat Med J 61:260–270

    Article  CAS  Google Scholar 

  17. Jiang J, Ma HW, Li QW, Lu JF, Niu GH, Zhang LJ, Ji SJ (2005) Association analysis on the polymorphisms of PCOL2 and Sp1 binding sites of COL1A1 gene and the congenital dislocation of the hip in Chinese population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22:327–329

    CAS  PubMed  Google Scholar 

  18. Rouault K, Scotet V, Autret S, Gaucher F, Dubrana F, Tanguy D, El Rassi CY, Fenoll B, Ferec C (2009) Do HOXB9 and COL1A1 genes play a role in congenital dislocation of the hip? Study in a Caucasian population. Osteoarthritis Cartilage 17:1099–1105. https://doi.org/10.1016/j.joca.2008.12.012

    Article  CAS  PubMed  Google Scholar 

  19. Shi D, Sun W, Xu X, Hao Z, Dai J, Xu Z, Chen D, Teng H, Jiang Q (2014) A replication study for the association of rs726252 in PAPPA2 with developmental dysplasia of the hip in Chinese Han population. Biomed Res Int 2014:979520. https://doi.org/10.1155/2014/979520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koene S, Knijnenburg J, Hoffer MJV, Zwanenburg F, Haak MC, Locher H, van Beelen ESA, Santen GWE, Rotteveel LJC (2022) Hearing loss, cleft palate, and congenital hip dysplasia in female carriers of an intragenic deletion of AMMECR1. Am J Med Genet A 188:1578–1582. https://doi.org/10.1002/ajmg.a.62669

    Article  CAS  PubMed  Google Scholar 

  21. Feldman GJ, Parvizi J, Levenstien M, Scott K, Erickson JA, Fortina P, Devoto M, Peters CL (2013) Developmental dysplasia of the hip: linkage mapping and whole exome sequencing identify a shared variant in CX3CR1 in all affected members of a large multigeneration family. J Bone Miner Res 28:2540–2549. https://doi.org/10.1002/jbmr.1999

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874. https://doi.org/10.1101/gr.176601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362. https://doi.org/10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  28. Koolen DA, Morgan A, de Vries BBA (1993) Koolen-de Vries Syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A (eds) GeneReviews®. University of Washington, Seattle

    Google Scholar 

  29. Dutton LC, Dudhia J, Guest DJ, Connolly DJ (2019) Inducing pluripotency in the domestic cat (Felis catus). Stem Cells Dev 28:1299–1309. https://doi.org/10.1089/scd.2019.0142

    Article  CAS  PubMed  Google Scholar 

  30. Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D (2019) Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 165:49–65. https://doi.org/10.1016/j.bcp.2019.02.036

    Article  CAS  PubMed  Google Scholar 

  31. Dingemans AJM, Stremmelaar DE, van der Donk R, Vissers L, Koolen DA, Rump P, Hehir-Kwa JY, de Vries BBA (2021) Quantitative facial phenotyping for Koolen-de Vries and 22q11.2 deletion syndrome. Eur J Hum Genet 29:1418–1423. https://doi.org/10.1038/s41431-021-00824-x

    Article  CAS  PubMed  Google Scholar 

  32. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC (2010) Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem 285:4268–4272. https://doi.org/10.1074/jbc.C109.087981

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Wu L, Corsa CA, Kunkel S, Dou Y (2009) Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell 36:290–301. https://doi.org/10.1016/j.molcel.2009.07.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koolen DA, Vissers LE, Pfundt R, de Leeuw N, Knight SJ, Regan R, Kooy RF, Reyniers E, Romano C, Fichera M et al (2006) A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat Genet 38:999–1001. https://doi.org/10.1038/ng1853

    Article  CAS  PubMed  Google Scholar 

  35. Ciaccio C, Dordoni C, Ritelli M, Colombi M (2016) Koolen-de Vries syndrome: clinical report of an adult and literature review. Cytogenet Genome Res 150:40–45. https://doi.org/10.1159/000452724

    Article  CAS  PubMed  Google Scholar 

  36. Koolen DA, Pfundt R, Linda K, Beunders G, Veenstra-Knol HE, Conta JH, Fortuna AM, Gillessen-Kaesbach G, Dugan S, Halbach S et al (2016) The Koolen-de Vries syndrome: a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant. Eur J Hum Genet 24:652–659. https://doi.org/10.1038/ejhg.2015.178

    Article  CAS  PubMed  Google Scholar 

  37. Amenta S, Frangella S, Marangi G, Lattante S, Ricciardi S, Doronzio PN, Orteschi D, Veredice C, Contaldo I, Zampino G et al (2020) Adult phenotype in Koolen-de Vries/KANSL1 haploinsufficiency syndrome. J Med Genet. https://doi.org/10.1136/jmedgenet-2020-107225

    Article  PubMed  Google Scholar 

  38. Li LY, Sun XK, Zhao Q, Zhang LJ, Li QW, Wang LL, Gao H (2010) Gene mapping of developmental dysplasia of the hip in chromosome 17q21 region. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 27:620–625. https://doi.org/10.3760/cma.j.issn.1003-9406.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  39. Feldman G, Offemaria A, Sawan H, Parvizi J, Freeman TA (2017) A murine model for developmental dysplasia of the hip: ablation of CX3CR1 affects acetabular morphology and gait. J Transl Med 15:233. https://doi.org/10.1186/s12967-017-1335-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Golriz Khatami S, Domingo-Fernandez D, Mubeen S, Hoyt CT, Robinson C, Karki R, Iyappan A, Kodamullil AT, Hofmann-Apitius M (2021) A systems biology approach for hypothesizing the effect of genetic variants on neuroimaging features in Alzheimer’s disease. J Alzheimers Dis 80:831–840. https://doi.org/10.3233/JAD-201397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mehana EE, Khafaga AF, El-Blehi SS (2019) The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review. Life Sci 234:116786. https://doi.org/10.1016/j.lfs.2019.116786

    Article  CAS  PubMed  Google Scholar 

  42. Hernandez PA, Wells J, Usheva E, Nakonezny PA, Barati Z, Gonzalez R, Kassem L, Henson FMD (2020) Early-onset osteoarthritis originates at the chondrocyte level in hip dysplasia. Sci Rep 10:627. https://doi.org/10.1038/s41598-020-57431-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bo N, Peng W, Xinghong P, Ma R (2012) Early cartilage degeneration in a rat experimental model of developmental dysplasia of the hip. Connect Tissue Res 53:513–520. https://doi.org/10.3109/03008207.2012.700346

    Article  CAS  PubMed  Google Scholar 

  44. Sun Y, Cheung JM, Martel-Pelletier J, Pelletier JP, Wenger L, Altman RD, Howell DS, Cheung HS (2000) Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J Biol Chem 275:11327–11332. https://doi.org/10.1074/jbc.275.15.11327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the participants and families involved in the study.

Funding

The study was supported by the National Natural Science Foundation of China (grant number: 81772296) and Liaoning Revitalization Talents Program (grant number: XLYC1908008).

Author information

Authors and Affiliations

Authors

Contributions

Study design: WBB, LLY. Study conduct and data analysis: XXW, WJ, BXY, RHG, LTY. Drafting manuscript: BXY, XXW. Revising manuscript: WBB, LLY. Approving final version of manuscript: WBB, LLY, XXW, BXY, WJ, RHG, LTY.

Corresponding authors

Correspondence to Lianyong Li or Binbin Wang.

Ethics declarations

Ethics approval and consent to participate

Written informed consent was obtained from the patients. This research was approved by the ethical committee of Shengjing Hospital of China Medical University (No.2017PS082K).

Consent for publication

Written informed consent for publication was obtained for this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaowen Xu and Xinying Bi contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 126 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Bi, X., Wang, J. et al. Identification of KANSL1 as a novel pathogenic gene for developmental dysplasia of the hip. J Mol Med 100, 1159–1168 (2022). https://doi.org/10.1007/s00109-022-02220-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02220-4

Keywords

Navigation