Skip to main content

Advertisement

Log in

Valproic acid modulates collagen architecture in the postoperative conjunctival scar

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Valproic acid (VPA), widely used for the treatment of neurological disorders, has anti-fibrotic activity by reducing collagen production in the postoperative conjunctiva. In this study, we investigated the capacity of VPA to modulate the postoperative collagen architecture. Histochemical examination revealed that VPA treatment was associated with the formation of thinner collagen fibers in the postoperative days 7 and 14 scars. At the micrometer scale, measurements by quantitative multiphoton microscopy indicated that VPA reduced mean collagen fiber thickness by 1.25-fold. At the nanometer scale, collagen fibril thickness and diameter measured by transmission electron microscopy were decreased by 1.08- and 1.20-fold, respectively. Moreover, delicate filamentous structures in random aggregates or closely associated with collagen fibrils were frequently observed in VPA-treated tissue. At the molecular level, VPA reduced Col1a1 but induced Matn2, Matn3, and Matn4 in the postoperative day 7 conjunctival tissue. Elevation of matrilin protein expression induced by VPA was sustained till at least postoperative day 14. In primary conjunctival fibroblasts, Matn2 expression was resistant to both VPA and TGF-β2, Matn3 was sensitive to both VPA and TGF-β2 individually and synergistically, while Matn4 was modulable by VPA but not TGF-β2. MATN2, MATN3, and MATN4 localized in close association with COL1A1 in the postoperative conjunctiva. These data indicate that VPA has the capacity to reduce collagen fiber thickness and potentially collagen assembly, in association with matrilin upregulation. These properties suggest potential VPA application for the prevention of fibrotic progression in the postoperative conjunctiva.

Key messages

  • VPA reduces collagen fiber and fibril thickness in the postoperative scar.

  • VPA disrupts collagen fiber assembly in conjunctival wound healing.

  • VPA induces MATN2, MATN3, and MATN4 in the postoperative scar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Xue M, Jackson CJ (2015) Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care (New Rochelle) 4:119–136. https://doi.org/10.1089/wound.2013.0485

    Article  Google Scholar 

  2. Herrera J, Henke CA, Bitterman PB (2018) Extracellular matrix as a driver of progressive fibrosis. J Clin Invest 128:45–53. https://doi.org/10.1172/JCI93557

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tschumperlin DJ, Ligresti G, Hilscher MB, Shah VH (2018) Mechanosensing and fibrosis. J Clin Invest 128:74–84. https://doi.org/10.1172/JCI93561

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jones MG, Andriotis OG, Roberts JJ, Lunn K, Tear VJ, Cao L, Ask K, Smart DE, Bonfanti A, Johnson P et al (2018) Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. Elife 7:e36354. https://doi.org/10.7554/eLife.36354

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brauer E, Lippens E, Klein O, Nebrich G, Schreivogel S, Korus G, Duda GN, Petersen A (2019) Collagen fibrils mechanically contribute to tissue contraction in an in vitro wound healing scenario. Adv Sci (Weinh) 6:1801780. https://doi.org/10.1002/advs.201801780

    Article  CAS  Google Scholar 

  6. Cairns JE (1968) Trabeculectomy. Preliminary report of a new method. Am J Ophthalmol 66:673–679

    Article  CAS  Google Scholar 

  7. Skuta GL, Parrish RK 2nd (1987) Wound healing in glaucoma filtering surgery. Surv Ophthalmol 32:149–170. https://doi.org/10.1016/0039-6257(87)90091-9

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, Jampel HD (2018) Imprecision medicine: the use of mitomycin C in trabeculectomy surgery. Ophthalmol Glaucoma 1:149–151. https://doi.org/10.1016/j.ogla.2018.10.004

    Article  PubMed  Google Scholar 

  9. Seet LF, Toh LZ, Finger SN, Chu SW, Stefanovic B, Wong TT (2016) Valproic acid suppresses collagen by selective regulation of Smads in conjunctival fibrosis. J Mol Med (Berl) 94:321–334. https://doi.org/10.1007/s00109-015-1358-z

    Article  CAS  Google Scholar 

  10. Seet LF, Toh LZ, Finger SN, Chu SWL, Wong TT (2019) Valproic acid exerts specific cellular and molecular anti-inflammatory effects in post-operative conjunctiva. J Mol Med (Berl) 97:63–75. https://doi.org/10.1007/s00109-018-1722-x

    Article  CAS  Google Scholar 

  11. Yap ZL, Seet LF, Chu SW, Toh LZ, Ibrahim FI, Wong TT (2021) Effect of valproic acid on functional bleb morphology in a rabbit model of minimally invasive surgery. Br J Ophthalmol 2020:318691. https://doi.org/10.1136/bjophthalmol-2020-318691

    Article  Google Scholar 

  12. Löscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16:669–694. https://doi.org/10.2165/00023210-200216100-00003

    Article  PubMed  Google Scholar 

  13. Chateauvieux S, Morceau F, Dicato M, Diederich M (2010) Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010:479364. https://doi.org/10.1155/2010/479364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seet LF, Su R, Barathi VA, Lee WS, Poh R, Heng YM, Manser E, Vithana EN, Aung T, Weaver M et al (2010) SPARC deficiency results in improved surgical survival in a novel mouse model of glaucoma filtration surgery. PLoS ONE 5:e9415. https://doi.org/10.1371/journal.pone.0009415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seet LF, Lee WS, Su R, Finger SN, Crowston JG, Wong TT (2011) Validation of the glaucoma filtration surgical mouse model for antifibrotic drug evaluation. Mol Med 17:557–567. https://doi.org/10.2119/molmed.2010.00188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seet LF, Chu SWL, Teng X, Toh LZ, Wong TT (2020) Assessment of progressive alterations in collagen organization in the postoperative conjunctiva by multiphoton microscopy. Biomed Opt Express 11:6495–6515. https://doi.org/10.1364/BOE.403555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ho H, Htoon HM, Yam GH, Toh LZ, Lwin NC, Chu S, Lee YS, Wong TT, Seet LF (2017) Altered anterior segment biometric parameters in mice deficient in SPARC. Invest Ophthalmol Vis Sci 58:386–393. https://doi.org/10.1167/iovs.16-20261

    Article  CAS  PubMed  Google Scholar 

  18. Seet LF, Toh LZ, Chu SWL, Finger SN, Chua JLL, Wong TT (2017) Upregulation of distinct collagen transcripts in post-surgery scar tissue: a study of conjunctival fibrosis. Dis Model Mech 10:751–760. https://doi.org/10.1242/dmm.028555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klatt AR, Becker AK, Neacsu CD, Paulsson M, Wagener R (2011) The matrilins: modulators of extracellular matrix assembly. Int J Biochem Cell Biol 43:320–330. https://doi.org/10.1016/j.biocel.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  20. Seet LF, Finger SN, Chu SW, Toh LZ, Wong TT (2013) Novel insight into the inflammatory and cellular responses following experimental glaucoma surgery: a roadmap for inhibiting fibrosis. Curr Mol Med 13:911–928. https://doi.org/10.2174/15665240113139990021

    Article  CAS  PubMed  Google Scholar 

  21. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data, a model-based variance estimation approach to identify genes suited for normalization applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  22. Crowston JG (2008) Long-term outcomes of trabeculectomy. Clin Exp Ophthalmol 36:705–706. https://doi.org/10.1111/j.1442-9071.2008.01893.x

    Article  PubMed  Google Scholar 

  23. Christiansen DL, Huang EK, Silver FH (2000) Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol 19:409–420. https://doi.org/10.1016/s0945-053x(00)00089-5

    Article  CAS  PubMed  Google Scholar 

  24. Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H (1998) Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141:1277–1286. https://doi.org/10.1083/jcb.141.5.1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raspanti M, Viola M, Sonaggere M, Tira ME, Tenni R (2007) Collagen fibril structure is affected by collagen concentration and decorin. Biomacromol 8:2087–2091. https://doi.org/10.1021/bm070091t

    Article  CAS  Google Scholar 

  26. Rentsendorj O, Nagy A, Sinko I, Daraba A, Barta E, Kiss I (2005) Highly conserved proximal promoter element harbouring paired Sox9-binding sites contributes to the tissue- and developmental stage-specific activity of the matrilin-1 gene. Biochem J 389:705–716. https://doi.org/10.1042/BJ20050214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Szabó E, Korpos E, Batmunkh E, Lotz G, Holczbauer A, Kovalszky I, Deák F, Kiss I, Schaff Z, Kiss A (2008) Expression of matrilin-2 in liver cirrhosis and hepatocellular carcinoma. Pathol Oncol Res 14:15–22. https://doi.org/10.1007/s12253-008-9005-4

    Article  CAS  PubMed  Google Scholar 

  28. Chen C, Wei X, Ling J, Xie N (2011) Expression of matrilin-2 and -4 in human dental pulps during dentin-pulp complex wound healing. J Endod 37:642–649. https://doi.org/10.1016/j.joen.2011.02.018

    Article  PubMed  Google Scholar 

  29. Deák F, Mátés L, Korpos E, Zvara A, Szénási T, Kiricsi M, Mendler L, Keller-Pintér A, Ozsvári B, Juhász H et al (2014) Extracellular deposition of matrilin-2 controls the timing of the myogenic program during muscle regeneration. J Cell Sci 127(Pt 15):3240–3256. https://doi.org/10.1242/jcs.141556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korpos É, Deák F, Kiss I (2015) Matrilin-2 an extracellular adaptor protein is needed for the regeneration of muscle nerve and other tissues. Neural Regen Res 10:866–869. https://doi.org/10.4103/1673-5374.158332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ichikawa T, Suenaga Y, Koda T, Ozaki T, Nakagawara A (2008) ΔNp63/BMP-7-dependent expression of matrilin-2 is involved in keratinocyte migration in response to wounding. Biochem Biophys Res Commun 369:994–1000. https://doi.org/10.1016/j.bbrc.2008.02.128

    Article  CAS  PubMed  Google Scholar 

  32. Raja E, Komuro A, Tanabe R, Sakai S, Ino Y, Saito N, Todo T, Morikawa M, Aburatani H, Koinuma D et al (2017) Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene 36:4963–4974. https://doi.org/10.1038/onc.2017.112

    Article  CAS  PubMed  Google Scholar 

  33. Andreev K, Zenkel M, Kruse F, Jünemann A, Schlötzer-Schrehardt U (2006) Expression of bone morphogenetic proteins (BMPs) their receptors and activins in normal and scarred conjunctiva: role of BMP-6 and activin-A in conjunctival scarring? Exp Eye Res 83:1162–1170. https://doi.org/10.1016/j.exer.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  34. Sixto-López Y, Bello M, Correa-Basurto J (2020) Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. J Comput Aided Mol Des 34:857–878. https://doi.org/10.1007/s10822-020-00304-2

    Article  CAS  PubMed  Google Scholar 

  35. Sun J, Piao J, Li N, Yang Y, Kim KY, Lin Z (2020) Valproic acid targets HDAC1/2 and HDAC1/PTEN/Akt signalling to inhibit cell proliferation via the induction of autophagy in gastric cancer. FEBS J 287:2118–2133. https://doi.org/10.1111/febs.15122

    Article  CAS  PubMed  Google Scholar 

  36. Lee BS, Kim YS, Kim HJ, Kim DH, Won HR, Kim YS, Kim CH (2018) HDAC4 degradation by combined TRAIL and valproic acid treatment induces apoptotic cell death of TRAIL-resistant head and neck cancer cells. Sci Rep 8:12520. https://doi.org/10.1038/s41598-018-31039-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang H, Zhang H, Sun Q, Yang J, Zeng C, Ding C, Cai D, Liu A, Bai X (2019) Chondrocyte mTORC1 activation stimulates miR-483-5p via HDAC4 in osteoarthritis progression. J Cell Physiol 234:2730–2740. https://doi.org/10.1002/jcp.27088

    Article  CAS  PubMed  Google Scholar 

  38. Frank S, Schulthess T, Landwehr R, Lustig A, Mini T, Jenö P, Engel J, Kammerer RA (2002) Characterization of the matrilin coiled-coil domains reveals seven novel isoforms. J Biol Chem 277:19071–19079. https://doi.org/10.1074/jbc.M202146200

    Article  CAS  PubMed  Google Scholar 

  39. Chen Q, Zhang Y, Johnson DM, Goetinck PF (1999) Assembly of a novel cartilage matrix protein filamentous network: molecular basis of differential requirement of von Willebrand factor A domains. Mol Biol Cell 10:2149–2162. https://doi.org/10.1091/mbc.10.7.2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klatt AR, Nitsche DP, Kobbe B, Morgelin M, Paulsson M, Wagener R (2000) Molecular structure and tissue distribution of matrilin-3, a filament-forming extracellular matrix protein expressed during skeletal development. J Biol Chem 275:3999–4006. https://doi.org/10.1074/jbc.275.6.3999

    Article  CAS  PubMed  Google Scholar 

  41. Piecha D, Wiberg C, Mörgelin M, Reinhardt DP, Deák F, Maurer P, Paulsson M (2002) Matrilin-2 interacts with itself and with other extracellular matrix proteins. Biochem J 367(Pt 3):715–721. https://doi.org/10.1042/BJ20021069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mann HH, Ozbek S, Engel J, Paulsson M, Wagener R (2004) Interactions between the cartilage oligomeric matrix protein and matrilins. Implications for matrix assembly and the pathogenesis of chondrodysplasias. J Biol Chem 279:25294–25298. https://doi.org/10.1074/jbc.M403778200

    Article  CAS  PubMed  Google Scholar 

  43. Budde B, Blumbach K, Ylöstalo J, Zaucke F, Ehlen HW, Wagener R, Ala-Kokko L, Paulsson M, Bruckner P, Grässel S (2005) Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX. Mol Cell Biol 25:10465–10478. https://doi.org/10.1128/MCB.25.23.10465-10478.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wiberg C, Klatt AR, Wagener R, Paulsson M, Bateman JF, Heinegård D, Mörgelin M (2003) Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J Biol Chem 278:37698–37704. https://doi.org/10.1074/jbc.M304638200

    Article  CAS  PubMed  Google Scholar 

  45. Huang X, Birk DE, Goetinck PF (1999) Mice lacking matrilin-1 (cartilage matrix protein) have alterations in type II collagen fibrillogenesis and fibril organization. Dev Dyn 216(4–5):434–441

    Article  CAS  Google Scholar 

  46. Nicolae C, Ko YP, Miosge N, Niehoff A, Studer D, Enggist L, Hunziker EB, Paulsson M, Wagener R, Aszodi A (2007) Abnormal collagen fibrils in cartilage of matrilin-1/matrilin-3-deficient mice. J Biol Chem 282:22163–22175. https://doi.org/10.1074/jbc.M610994200

    Article  CAS  PubMed  Google Scholar 

  47. Li P, Fleischhauer L, Nicolae C, Prein C, Farkas Z, Saller MM, Prall WC, Wagener R, Heilig J, Niehoff A et al (2020) Mice lacking the matrilin family of extracellular matrix proteins develop mild skeletal abnormalities and are susceptible to age-associated osteoarthritis. Int J Mol Sci 21:666. https://doi.org/10.3390/ijms21020666

    Article  CAS  PubMed Central  Google Scholar 

  48. Roeder BA, Kokini K, Voytik-Harbin SL (2009) Fibril microstructure affects strain transmission within collagen extracellular matrices. J Biomech Eng 131:031004. https://doi.org/10.1115/1.3005331

    Article  PubMed  Google Scholar 

  49. Wells RG (2013) Tissue mechanics and fibrosis. Biochim Biophys Acta 1832:884–890. https://doi.org/10.1016/j.bbadis.2013.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frank C, McDonald D, Shrive N (1997) Collagen fibril diameters in the rabbit medial collateral ligament scar: a longer term assessment. Connect Tissue Res 36:261–269. https://doi.org/10.3109/03008209709160226

    Article  CAS  PubMed  Google Scholar 

  51. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4:165–178. https://doi.org/10.1242/dmm.004077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the SingHealth Advanced Bioimaging Core Facilities (Singapore) for facilitating the transmission electron microscopy.

Funding

This research was supported by a SERI-Lee Foundation Pilot Grant (R1582/81/2018), NMRC Senior Investigator Clinician Scientist Award (NMRC/CSA-SI/0001/2015) and grants from the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Program (NMRC/TCR/008-SERI/2013). Animal studies were partially funded by the SERI core grant (NMRC/CG/015/2013). All grants were administered by the Singapore Ministry of Health’s National Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

LFS conceptualized, designed, and performed research, analyzed and interpreted data, and wrote the paper; SWLC, LZT, XT, and GHFY performed research; GHFY and TTW edited the manuscript.

Corresponding authors

Correspondence to Li-Fong Seet or Tina T. Wong.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Institutional Animal Care and Use Committee (IACUC) and treated in accordance with the Association for Research in Vision and Ophthalmology (ARVO) Statement on the Use of Animals in Ophthalmic and Vision Research.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seet, LF., Chu, S.W., Toh, L.Z. et al. Valproic acid modulates collagen architecture in the postoperative conjunctival scar. J Mol Med 100, 947–961 (2022). https://doi.org/10.1007/s00109-021-02171-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02171-2

Keywords

Navigation