Skip to main content

Advertisement

Log in

Discriminating head trauma outcomes using machine learning and genomics

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

A percentage of the population suffers prolonged and persistent post-concussion symptoms (PCS) following average head injuries or develops severe neurological dysfunction following minor head trauma. Genetic variants that may contribute to individual response to head trauma have been investigated in some studies, but to date none have explored the use of machine learning (ML) methods with genomic data to specifically explore outcomes of head trauma. Whole exome sequencing (WES) was completed for three groups of individuals (N = 60): (a) 16 individuals with severe neurological responses to minor head trauma, (b) 26 individuals with persistent PCS and (c) 18 individuals with normal recovery from concussion or mTBI. Gradient boosted tree algorithms were applied to the data using XGBoost. By using variants with CADD scores above 15 in the training set (randomly sampled 70%), we identified signatures that accurately distinguish to accurately distinguish the test groups with an average area under the curve (AUC) of 0.8 (SE = 0.019). Metrics including positive and negative prediction values, as well as kappa were all within acceptable range to support the prediction accuracy. This study illustrates how ML methods in combination with WES data have the potential to predict severe or prolonged responses to head trauma from healthy recovery.

Key messages

  • Linear association analysis has been inconclusive in concussion genetics.

  • Non-linear methods as boosted trees can offer better insights in small samples.

  • Strong discrimination trends can be achieved from exome data of cases and controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Summary-level data is available at the author’s discretion.

Code availability

All the codes used for this study are freely available upon request.

References

  1. Messina R, Filippi M, Goadsby PJ (2018) Recent advances in headache neuroimaging. Curr Opin Neurol 31(4):379–385. https://doi.org/10.1097/wco.0000000000000573

    Article  PubMed  Google Scholar 

  2. Rocca MA, Ceccarelli A, Falini A, Colombo B, Tortorella P, Bernasconi L, Comi G, Scotti G, Filippi M (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37(7):1765–1770. https://doi.org/10.1161/01.STR.0000226589.00599.4d

    Article  PubMed  Google Scholar 

  3. Iverson GL, Gardner AJ, Terry DP, Ponsford JL, Sills AK, Broshek DK, Solomon GS (2017) Predictors of clinical recovery from concussion: a systematic review. Br J Sports Med 51(12):941–948. https://doi.org/10.1136/bjsports-2017-097729

    Article  PubMed  Google Scholar 

  4. McDevitt J, Krynetskiy E (2017) Genetic findings in sport-related concussions: potential for individualized medicine? Concussion (London, England) 2(1):CNC26–CNC26. https://doi.org/10.2217/cnc-2016-0020

    Article  Google Scholar 

  5. Coyle HL, Ponsford J, Hoy KE (2018) Understanding individual variability in symptoms and recovery following mTBI: a role for TMS-EEG? Neurosci Biobehav Rev 92:140–149. https://doi.org/10.1016/j.neubiorev.2018.05.027

    Article  PubMed  Google Scholar 

  6. Johnson B, Zhang K, Gay M, Horovitz S, Hallett M, Sebastianelli W, Slobounov S (2012) Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. Neuroimage 59(1):511–518. https://doi.org/10.1016/j.neuroimage.2011.07.081. Epub 2011 Aug 7. PMID: 21846504; PMCID: PMC3196274

  7. Yang J et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42(7):565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romagnoni A, Jégou S, Van Steen K, Wainrib G, Hugot J-P (2019) Comparative performances of machine learning methods for classifying Crohn disease patients using genome-wide genotyping data. Sci Rep 9(1):1–18

    Article  CAS  Google Scholar 

  9. González-Recio O, Jiménez-Montero J, Alenda R (2013) The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets. J Dairy Sci 96(1):614–624

    Article  PubMed  Google Scholar 

  10. Auffray C, Griffin JL, Khoury MJ, Lupski JR, Schwab M (2019) Ten years of Genome Medicine. Genome Med 11(1):7. https://doi.org/10.1186/s13073-019-0618-x

  11. Ashley EA (2015) The precision medicine initiative: a new national effort. JAMA 313(21):2119–2120. https://doi.org/10.1001/jama.2015.3595

    Article  CAS  PubMed  Google Scholar 

  12. Trakadis YJ, Sardaar S, Chen A, Fulginiti V, Krishnan A (2019) Machine learning in schizophrenia genomics, a case-control study using 5,090 exomes. Am J Med Genet B Neuropsychiatr Genet 180(2):103–112. https://doi.org/10.1002/ajmg.b.32638

    Article  CAS  PubMed  Google Scholar 

  13. Er F, Iscen P, Sahin S, Çinar N, Karsidag S, Goularas D (2017) Distinguishing age-related cognitive decline from dementias: a study based on machine learning algorithms. J Clin Neurosci 42:186–192. https://doi.org/10.1016/j.jocn.2017.03.021

    Article  PubMed  Google Scholar 

  14. Kassahun Y, Perrone R, De Momi E, Berghöfer E, Tassi L, Canevini MP, Spreafico R, Ferrigno G, Kirchner F (2014) Automatic classification of epilepsy types using ontology-based and genetics-based machine learning. Artif Intell Med 61(2):79–88. https://doi.org/10.1016/j.artmed.2014.03.001

    Article  PubMed  Google Scholar 

  15. Pare G, Mao S, Deng WQ (2017) A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  16. Ibrahim O, Sutherland HG, Maksemous N, Smith R, Haupt LM, Griffiths LR (2020) Exploring neuronal vulnerability to head trauma using a whole exome approach. J Neurotrauma 37(17):1870–1879. https://doi.org/10.1089/neu.2019.6962

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England) 27(21):2987–2993. https://doi.org/10.1093/bioinformatics/btr509

    Article  CAS  Google Scholar 

  18. Danecek P et al (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158. https://doi.org/10.1093/bioinformatics/btr330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining 785–794. https://doi.org/10.1145/2939672.2939785. PMID: 30767786; PMCID: PMC6376775.KDD

  20. Wray NR, Yang J, Goddard ME, Visscher PM (2010) The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet 6(2):e1000864. https://doi.org/10.1371/journal.pgen.1000864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park JH, Shin SD, Song KJ, Hong KJ, Ro YS, Choi JW, Choi SW (2019) Prediction of good neurological recovery after out-of-hospital cardiac arrest: a machine learning analysis. Resuscitation 142:127–135. https://doi.org/10.1016/j.resuscitation.2019.07.020

    Article  PubMed  Google Scholar 

  22. Giza CC et al (2013) Summary of evidence-based guideline update: evaluation and management of concussion in sports: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 80(24):2250–2257. https://doi.org/10.1212/WNL.0b013e31828d57dd

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maksemous N et al (2019) Targeted next generation sequencing identifies a genetic spectrum of DNA variants in patients with hemiplegic migraine. Cephalalgia Rep 2:2515816319881630

    Google Scholar 

  24. Sweadner KJ, Toro C, Whitlow CT, Snively BM, Cook JF, Ozelius LJ, Markello TC, Brashear A (2016) ATP1A3 mutation in adult rapid-onset ataxia. PLoS ONE 11(3):e0151429–e0151429. https://doi.org/10.1371/journal.pone.0151429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fadó R, Rodríguez-Rodríguez R, Casals N (2021) The return of malonyl-CoA to the brain: cognition and other stories. Prog Lipid Res 81:101071. https://doi.org/10.1016/j.plipres.2020.101071

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L et al (2015) Mitochondria-focused gene expression profile reveals common pathways and CPT1B dysregulation in both rodent stress model and human subjects with PTSD. Transl Psychiatry 5(6):e580–e580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chung RS, Leung YK, Butler CW, Chen Y, Eaton ED, Pankhurst MW, West AK, Guillemin GJ (2009) Metallothionein treatment attenuates microglial activation and expression of neurotoxic quinolinic acid following traumatic brain injury. Neurotox Res 15(4):381–389. https://doi.org/10.1007/s12640-009-9044-y

    Article  CAS  PubMed  Google Scholar 

  28. Zaręba N, Kepinska M (2020) The function of transthyretin complexes with metallothionein in Alzheimer’s disease. Int J Mol Sci 21(23):9003. https://doi.org/10.3390/ijms21239003

    Article  CAS  PubMed Central  Google Scholar 

  29. Daneshjou R et al (2017) Working toward precision medicine: predicting phenotypes from exomes in the critical assessment of genome interpretation (CAGI) challenges. Hum Mutat 38(9):1182–1192. https://doi.org/10.1002/humu.23280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ben-David A (2008) Comparison of classification accuracy using Cohen’s weighted kappa. Expert Syst Appl 34(2):825–832

    Article  Google Scholar 

  31. Seigel DG, Podgo MJ, Remaley NA (1992) Acceptable values of kappa for comparison of two groups. Am J Epidemiol 135(5):571–578

    Article  CAS  PubMed  Google Scholar 

  32. Rasmussen AH, Olofsson I, Chalmer MA, Olesen J, Hansen TF (2020) Higher burden of rare frameshift indels in genes related to synaptic transmission separate familial hemiplegic migraine from common types of migraine. J Med Genet 57(9):610–616. https://doi.org/10.1136/jmedgenet-2019-106640

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by The Assistant Secretary of Defence for Health Affairs endorsed by the Department of Defence, through FY 2018 Peer Reviewed Medical Research Program Discovery Award, under Award No. W81XWH1910098. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. This work was supported by the National Health and Medical Research Council through grant GNT1122387—Identifying novel gene mutations for molecular diagnosis of familial hemiplegic migraine.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Omar Ibrahim, Lyn R. Griffiths; methodology: Omar Ibrahim, Neven Maksemous, Rodney A. Lea, Heidi G. Sutherland; formal analysis and investigation: Omar Ibrahim, Rod A Lea; writing—original draft preparation: Omar Ibrahim; writing—review and editing: Omar Ibrahim, Heidi G. Sutherland, Rodney A. Lea, Fatima Nasrallah, Neven Maksemous, Robert A. Smith, Larisa M. Haupt, Lyn R. Griffiths; funding acquisition: Lyn R. Griffiths; resources: Larisa M. Haupt, Fatima Nasrallah; supervision: Lyn R. Griffiths, Larisa M. Haupt, Heidi G. Sutherland.

Corresponding author

Correspondence to Lyn R. Griffiths.

Ethics declarations

Ethics approval

Ethical approval for this project was provided by the Queensland University of Technology Human Research Ethics Committee (project approvals 1700000811 and 1800000611).

Consent to participate

All the participants provided appropriate consent for participation in the research under the terms of the ethical approval for this study.

Conflict of interest

The authors declare no competing interests.

Disclaimer

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defence.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, O., Sutherland, H.G., Lea, R.A. et al. Discriminating head trauma outcomes using machine learning and genomics. J Mol Med 100, 303–312 (2022). https://doi.org/10.1007/s00109-021-02158-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02158-z

Keywords

Navigation