Skip to main content

Advertisement

Log in

The vasculature niches required for hematopoiesis

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

A Correction to this article was published on 24 November 2021

This article has been updated

Abstract

Endothelial cells play a critical role in supporting postnatal hematopoiesis in the bone marrow. Unique endothelial cells, together with various perivascular cells, form different types of vascular structures, constructing a vast microvascular delivery and trafficking network for blood cells, oxygen, and nutrition. These blood vessels build distinct hematopoietic stem and progenitor cell niches, which offer not only sites of residence for blood cells but also indispensable signals directing HSPC homing, self-renewal, and multilineage differentiation. Deep insight into the structure and function of the BM vasculature niche and its participation in hematopoiesis is necessary to develop advanced strategies for the reconstitution of hematopoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Cheng H, Cheng T (2017) Hematopoietic stem cell niches. Sci Sin Vitae 47:1242–1252. https://doi.org/10.1360/n052017-00273

    Article  Google Scholar 

  2. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462. https://doi.org/10.1038/nature10783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230. https://doi.org/10.1038/nature11926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988. https://doi.org/10.1016/j.immuni.2006.10.016

    Article  CAS  PubMed  Google Scholar 

  5. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D et al (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643. https://doi.org/10.1038/nature12612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN et al (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–130. https://doi.org/10.1038/nature15250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–168. https://doi.org/10.1016/j.stem.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846. https://doi.org/10.1038/nature02040

    Article  CAS  Google Scholar 

  9. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y et al (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20:1315–1320. https://doi.org/10.1038/nm.3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC et al (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20:1321–1326. https://doi.org/10.1038/nm.3706

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841. https://doi.org/10.1038/nature02041

    Article  CAS  PubMed  Google Scholar 

  12. Rafii S, Shapiro F, Rimarachin J, Nachman RL, Ferris B, Weksler B et al (1994) Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84:10–19

    Article  CAS  Google Scholar 

  13. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT et al (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6:251–264. https://doi.org/10.1016/j.stem.2010.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M et al (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4:263–274. https://doi.org/10.1016/j.stem.2009.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:323–328. https://doi.org/10.1038/nature13145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kusumbe AP, Ramasamy SK, Itkin T, Mae MA, Langen UH, Betsholtz C et al (2016) Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532:380–384. https://doi.org/10.1038/nature17638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE et al (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15:533–543. https://doi.org/10.1038/ncb2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS et al (2016) Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530:223–227. https://doi.org/10.1038/nature16943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96. https://doi.org/10.1038/nature07434

    Article  CAS  PubMed  Google Scholar 

  20. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP et al (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328. https://doi.org/10.1038/nature17624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435:969–973. https://doi.org/10.1038/nature03703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121. https://doi.org/10.1016/j.cell.2005.05.026

    Article  CAS  PubMed  Google Scholar 

  23. Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ (2019) Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell 24:477–486. https://doi.org/10.1016/j.stem.2018.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Wu Q, Johnson CB, Pham G, Kinder JM, Olsson A et al (2021) In situ mapping identifies distinct vascular niches for myelopoiesis. Nature 590:457–462. https://doi.org/10.1038/s41586-021-03201-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451. https://doi.org/10.1038/nm1388

    Article  CAS  PubMed  Google Scholar 

  26. Asada N, Kunisaki Y, Pierce H, Wang Z, Fernandez NF, Birbrair A et al (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19:214–223. https://doi.org/10.1038/ncb3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507:376–380. https://doi.org/10.1038/nature13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tavassoli M, Crosby WH (1968) Transplantation of marrow to extramedullary sites. Science 161:54–56. https://doi.org/10.1126/science.161.3836.54

    Article  CAS  PubMed  Google Scholar 

  29. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336. https://doi.org/10.1016/j.cell.2007.08.025

    Article  CAS  Google Scholar 

  30. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235. https://doi.org/10.1038/nature11885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cordeiro Gomes A, Hara T, Lim VY, Herndler-Brandstetter D, Nevius E, Sugiyama T et al (2016) Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity 45:1219–1231. https://doi.org/10.1016/j.immuni.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  33. Shen B, Tasdogan A, Ubellacker JM, Zhang J, Nosyreva ED, Du L et al (2021) A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 591:438–444. https://doi.org/10.1038/s41586-021-03298-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heazlewood SY, Neaves RJ, Williams B, Haylock DN, Adams TE, Nilsson SK (2013) Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res 11:782–792. https://doi.org/10.1016/j.scr.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  35. Barker JE (1994) Sl/Sld hematopoietic progenitors are deficient in situ. Exp Hematol 22:174–177

    CAS  PubMed  Google Scholar 

  36. Tzeng YS, Li H, Kang YL, Chen WC, Cheng WC, Lai DM (2011) Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117:429–439. https://doi.org/10.1182/blood-2010-01-266833

    Article  CAS  PubMed  Google Scholar 

  37. Zhao M, Ross JT, Itkin T, Perry JM, Venkatraman A, Haug JS et al (2012) FGF signaling facilitates postinjury recovery of mouse hematopoietic system. Blood 120:1831–1842. https://doi.org/10.1182/blood-2011-11-393991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yeoh JS, van Os R, Weersing E, Ausema A, Dontje B, Vellenga E et al (2006) Fibroblast growth factor-1 and -2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures. Stem Cells 24:1564–1572. https://doi.org/10.1634/stemcells.2005-0439

    Article  CAS  PubMed  Google Scholar 

  39. Itkin T, Ludin A, Gradus B, Gur-Cohen S, Kalinkovich A, Schajnovitz A et al (2012) FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood 120:1843–1855. https://doi.org/10.1182/blood-2011-11-394692

    Article  CAS  PubMed  Google Scholar 

  40. Radtke F, Wilson A, Mancini SJ, MacDonald HR (2004) Notch regulation of lymphocyte development and function. Nat Immunol 5:247–253. https://doi.org/10.1038/ni1045

    Article  CAS  PubMed  Google Scholar 

  41. Mercher T, Cornejo MG, Sears C, Kindler T, Moore SA, Maillard I et al (2008) Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell 3:314–326. https://doi.org/10.1016/j.stem.2008.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varnum-Finney B, Halasz LM, Sun M, Gridley T, Radtke F, Bernstein ID (2011) Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J Clin Invest 121:1207–1216. https://doi.org/10.1172/JCI43868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maillard I, Koch U, Dumortier A, Shestova O, Xu L, Sai H et al (2008) Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2:356–366. https://doi.org/10.1016/j.stem.2008.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Vita S, Li Y, Harris CE, McGuinness MK, Ma C, Williams DA (2018) The gp130 cytokine interleukin-11 regulates engraftment of Vav1(-)(/)(-) hematopoietic stem and progenitor cells in lethally irradiated recipients. Stem Cells 36:446–457. https://doi.org/10.1002/stem.2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yao L, Yokota T, Xia L, Kincade PW, McEver RP (2005) Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood 106:4093–4101. https://doi.org/10.1182/blood-2005-02-0671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stanley ER, Chitu V (2014) CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 6:a021857. https://doi.org/10.1101/cshperspect.a021857

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was not supported by any commercial or financial interests. Research grants were obtained from the following noncommercial foundations: Science and Technology Project of Guangdong Province, Grant/Award Number: 2016A020216027; China Postdoctoral Science Foundation, Grant/Award Number: 2017M612848; Science and Technology Project of Yue-Xiu District of Guangzhou, Grant/Award Number: 2017-WS-004.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: Yan Sun. Drafted or revised the manuscript: Zuohua Chi, Yan Sun. Writing, review, and/or revision of the manuscript: all authors. Study supervision: Yan Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The image of Fig. 1 is modified in the published proof. In the modified image of Fig. 1, the missing "-1" is added and "CD31+Sca-VEGFR2+VEGFR3+ cells (sBMECs) " is corrected to "CD31+Sca-1-VEGFR2+VEGFR3+ cells (sBMECs)". In addition, the image of Fig.1 with improved quality and resolution is provided.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Z., Chen, L., Ye, X. et al. The vasculature niches required for hematopoiesis. J Mol Med 100, 53–61 (2022). https://doi.org/10.1007/s00109-021-02155-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02155-2

Keywords

Navigation