Skip to main content

Mixed lineage kinase domain-like pseudokinase-mediated necroptosis aggravates periodontitis progression

Abstract

Necroptosis is a form of cell death that is reportedly involved in the pathogenesis of periodontitis. The role of Mlkl-involved necroptosis remains unclear. Herein, this project aimed to explore the role of MLKL-mediated necroptosis in periodontitis in vitro and in vivo. Expression of RIPK3, MLKL, and phosphorylated MLKL was observed in gingival tissues obtained from healthy subjects or patients with periodontitis. The cell viability of Porphyromonas gingivalis lipopolysaccharide (LPS-Pg)-treated cells was detected. In wild type or Mlkl deficiency mice with ligature-induced periodontitis, alveolar bone loss and osteoclast activation were assessed. mRNA levels of inflammatory cytokines in bone marrow-derived macrophages were tested by qRT-PCR. Increased expression of RIPK3, MLKL, and phosphorylated MLKL was observed in gingival tissues obtained from patients with periodontitis. Porphyromonas gingivalis lipopolysaccharide (LPS-Pg)-treated cells developed necroptosis after caspase inhibition and negatively regulated the NF-κB signaling pathway. In mice with ligature-induced periodontitis, Mlkl deficiency reduced alveolar bone loss and weakened osteoclast activation. Furthermore, genetic ablation of Mlkl in LPS-Pg-treated bone marrow-derived macrophages increased the mRNA levels of tumor necrosis factor-α, interleukin (Il)-1β, Il-6, cyclooxygenase 2, matrix metalloproteinase 9, and receptor activator of nuclear factor kappa-B ligand. Our data indicated that MLKL-mediated necroptosis aggravates the development of periodontitis in a Mlkl-deficient mouse. This will provide a new sight for the understanding of etiology and therapies of periodontitis.

Key messages

  • MLKL expression was up-regulated in inflamed human gingival tissue.

  • Mlkl deficiency affected the progression of periodontitis.

  • Necroptosis played a major role in mice periodontitis model.

  • Knockout of Mlkl had a significant effect on inflammatory responses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. 1.

    Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJL, Marcenes W (2014) Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J Dent Res 93:1045–1053. https://doi.org/10.1177/0022034514552491

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Holde GE, Oscarson N, Trovik TA, Tillberg A, Jonsson B (2017) Periodontitis prevalence and severity in adults: a cross-sectional study in Norwegian circumpolar communities. J Periodontol 88:1012–1022. https://doi.org/10.1902/jop.2017.170164

    Article  PubMed  Google Scholar 

  3. 3.

    Hayashi C, Gudino CV, Gibson FC 3rd, Genco CA (2010) Review: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol 25:305–316. https://doi.org/10.1111/j.2041-1014.2010.00582.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hajishengallis G (2015) Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 15:30–44. https://doi.org/10.1038/nri3785

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Irie K, Novince CM, Darveau RP (2014) Impact of the oral commensal flora on alveolar bone homeostasis. J Dent Res 93:801–806. https://doi.org/10.1177/0022034514540173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Wallach D, Kang TB, Kovalenko A (2014) Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat Rev Immunol 14:51–59. https://doi.org/10.1038/nri3561

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Newton K, Manning G (2016) Necroptosis and Inflammation. Annu Rev Biochem 85:743–763. https://doi.org/10.1146/annurev-biochem-060815-014830

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320. https://doi.org/10.1038/nature14191

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Wallach D, Kang TB, Dillon CP, Green DR (2016) Programmed necrosis in inflammation: toward identification of the effector molecules. Science 352:aaf2154. https://doi.org/10.1126/science.aaf2154

  10. 10.

    Chan FK, Luz NF, Moriwaki K (2015) Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol 33:79–106. https://doi.org/10.1146/annurev-immunol-032414-112248

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Shlomovitz I, Zargrian S, Gerlic M (2017) Mechanisms of RIPK3-induced inflammation. Immunol Cell Biol 95:166–172. https://doi.org/10.1038/icb.2016.124

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Silke J, Rickard JA, Gerlic M (2015) The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 16:689–697. https://doi.org/10.1038/ni.3206

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Song B, Zhou T, Yang WL, Liu J, Shao LQ (2017) Programmed cell death in periodontitis: recent advances and future perspectives. Oral Dis 23:609–619. https://doi.org/10.1111/odi.12574

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Manosudprasit A, Kantarci A, Hasturk H, Stephens D, Van Dyke TE (2017) Spontaneous PMN apoptosis in type 2 diabetes and the impact of periodontitis. J Leukoc Biol 102:1431–1440. https://doi.org/10.1189/jlb.4A0416-209RR

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Bullon P, Cordero MD, Quiles JL, Ramirez-Tortosa MDC, Gonzalez-Alonso A, Alfonsi S, García-Marín R, de Miguel M, Battino M (2012) Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation. BMC Med 10:122–122. https://doi.org/10.1186/1741-7015-10-122

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465. https://doi.org/10.1056/NEJMra1310050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Weinlich R, Oberst A, Beere HM, Green DR (2017) Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol 18:127–136. https://doi.org/10.1038/nrm.2016.149

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–1485. https://doi.org/10.1084/jem.187.9.1477

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Challa S, Chan FK (2010) Going up in flames: necrotic cell injury and inflammatory diseases. Cellular and molecular life sciences : CMLS 67:3241–3253. https://doi.org/10.1007/s00018-010-0413-8

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Oberst A, Green DR (2011) It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival. Nat Rev Mol Cell Biol 12:757–763. https://doi.org/10.1038/nrm3214

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Kim SJ, Li J (2013) Caspase blockade induces RIP3-mediated programmed necrosis in Toll-like receptor-activated microglia. Cell Death Dis 4:e716. https://doi.org/10.1038/cddis.2013.238

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–372. https://doi.org/10.1038/nature09857

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Humphries F, Yang S, Wang B, Moynagh PN (2015) RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ 22:225–236. https://doi.org/10.1038/cdd.2014.126

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147. https://doi.org/10.1038/nrm3737

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Zelic M, Roderick JE, O’Donnell JA, Lehman J, Lim SE, Janardhan HP, Trivedi CM, Pasparakis M, Kelliher MA (2018) RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J Clin Invest 128:2064–2075. https://doi.org/10.1172/JCI96147

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Jouan-Lanhouet S, Riquet F, Duprez L, Vanden Berghe T, Takahashi N, Vandenabeele P (2014) Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol 35:2–13. https://doi.org/10.1016/j.semcdb.2014.08.010

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Shi J, Li J, Su W, Zhao S, Li H, Lei L (2019) Loss of periodontal ligament fibroblasts by RIPK3-MLKL-mediated necroptosis in the progress of chronic periodontitis. Sci Rep 9:2902. https://doi.org/10.1038/s41598-019-39721-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ke X, Lei L, Li H, Li H, Yan F (2016) Manipulation of necroptosis by Porphyromonas gingivalis in periodontitis development. Mol Immunol 77:8–13. https://doi.org/10.1016/j.molimm.2016.07.010

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Li J, Shi J, Pan Y, Zhao Y, Yan F, Li H, Lei L (2019) Transcription modulation by CDK9 regulates inflammatory genes and RIPK3-MLKL-mediated necroptosis in periodontitis progression. Sci Rep 9:17369. https://doi.org/10.1038/s41598-019-53910-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Dutzan N, Abusleme L, Bridgeman H, Greenwell-Wild T, Zangerle-Murray T, Fife ME, Bouladoux N, Linley H, Brenchley L, Wemyss K et al (2017) On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity 46:133–147. https://doi.org/10.1016/j.immuni.2016.12.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ahmed FE, Gouda MM, Hussein LA, Ahmed NC, Vos PW, Mohammad MA (2017) Role of melt curve analysis in interpretation of nutrigenomics’ microRNA expression data. Cancer Genomics Proteomics 14:469–481. https://doi.org/10.21873/cgp.20057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    He S, Liang Y, Shao F, Wang X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 108:20054–20059. https://doi.org/10.1073/pnas.1116302108

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Zenobia C, Hajishengallis G (2015) Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis. Virulence 6:236–243. https://doi.org/10.1080/21505594.2014.999567

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54:133–146. https://doi.org/10.1016/j.molcel.2014.03.003

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Kondylis V, Kumari S, Vlantis K, Pasparakis M (2017) The interplay of IKK, NF-κB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol Rev 277:113–127. https://doi.org/10.1111/imr.12550

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, Ma J, Chen W, Zhang Y, Zhou X et al (2013) Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 23:994–1006. https://doi.org/10.1038/cr.2013.91

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 82071123, China) and the Shanghai Science and Technology Committee (project 20Y11904200).

Author information

Affiliations

Authors

Contributions

Yanan Yang performed all experiments, interpreted the results, and drafted the manuscript. Lingxia Wang was involved in sample acquisition. Lijun Luo and Haibing Zhang contributed to conception and design of the study. Lijun Luo conceived the idea for the project, supervised the project, critically revised the manuscript, and have given final approval of the version to be published.

Corresponding author

Correspondence to Lijun Luo.

Ethics declarations

Ethics approval

This study, including the method of obtaining consent, was approved by the Clinical Ethics Committee of at the School of Stomatology, Tongji University, in accordance with government-issued guidelines and institution policies (Approval number 2018011 and 2018012).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, L., Zhang, H. et al. Mixed lineage kinase domain-like pseudokinase-mediated necroptosis aggravates periodontitis progression. J Mol Med (2021). https://doi.org/10.1007/s00109-021-02126-7

Download citation

Keywords

  • Necroptosis
  • Periodontitis
  • Cell death
  • Alveolar bone loss
  • Inflammation