Skip to main content

Advertisement

Log in

The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Gene transcription is strictly controlled by transcriptional complexes, which are assemblies of transcription factors, transcriptional regulators, and co-regulators. Mammalian genomes encode two C-terminal-binding proteins (CtBPs), CtBP1 and CtBP2, which are both well-known transcriptional corepressors of oncogenic processes. Their overexpression in tumors is associated with malignant behavior, such as uncontrolled cell proliferation, migration, and invasion, as well as with an increase in the epithelial-mesenchymal transition. CtBPs coordinate with other transcriptional regulators, such as histone deacetylases (HDACs) and histone acetyltransferases (p300 and CBP [CREBP-binding protein]) that contain the PXDLS motif, and with transcription factors to assemble transcriptional complexes that dock onto the promoters of genes to initiate gene transcription. Emerging evidence suggests that CtBPs function as both corepressors and coactivators in different biological processes ranging from apoptosis to inflammation and osteogenesis. Therapeutic targeting of CtBPs or the interactions required to form transcriptional complexes has also shown promising effects in preventing disease progression. This review summarizes the most recent progress in the study of CtBP functions and therapeutic inhibitors in different biological processes. This knowledge may enable a better understanding of the complexity of the roles of CtBPs, while providing new insights into therapeutic strategies that target CtBPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dcona MM, Morris BL, Ellis KC, Grossman SR (2017) CtBP- an emerging oncogene and novel small molecule drug target: advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 18(6):379–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chinnadurai G (2007) Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol 39(9):1593–1607

    Article  CAS  PubMed  Google Scholar 

  3. Blevins MA, Huang M, Zhao R (2017) The role of CtBP1 in oncogenic processes and its potential as a therapeutic target. Mol Cancer Ther 16(6):981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Che S, Cai G, He Y, Chen J, Xu W (2016) Expression and prognostic significance of CTBP2 in human gliomas. Oncol Lett 12(4):2429–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hubler D, Rankovic M, Richter K, Lazarevic V, Altrock WD, Fischer KD et al (2012) Differential spatial expression and subcellular localization of CtBP family members in rodent brain. PLoS One 7(6):e39710

  6. Hildebrand JD, Soriano P (2002) Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22(15):5296–5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Molloy DP, Barral PM, Gallimore PH, Grand RJ (2007) The effect of CtBP1 binding on the structure of the C-terminal region of adenovirus 12 early region 1A. Virology 363(2):342–356

    Article  CAS  PubMed  Google Scholar 

  8. Hilbert BJ, Grossman SR, Schiffer CA, Royer WE Jr (2014) Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design. FEBS Lett 588(9):1743–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stankiewicz TR, Gray JJ, Winter AN, Linseman DA (2014) C-terminal binding proteins: central players in development and disease. Biomol Concepts 5(6):489–511

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Q, Piston DW, Goodman RH (2002) Regulation of corepressor function by nuclear NADH. Science 295(5561):1895–1897

    Article  CAS  PubMed  Google Scholar 

  11. Lin X, Sun B, Liang M, Liang YY, Gast A, Hildebrand J et al (2003) Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 11(5):1389–1396

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Q, Nottke A, Goodman RH (2005) Homeodomain-interacting protein kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis. Proc Natl Acad Sci U S A 102(8):2802–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang SY, Iordanov M, Zhang Q (2006) c-Jun NH2-terminal kinase promotes apoptosis by down-regulating the transcriptional co-repressor CtBP. J Biol Chem 281(46):34810–34815

    Article  CAS  PubMed  Google Scholar 

  14. Lee HJ, Zheng JJ (2010) PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 8:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nardini M, Svergun D, Konarev PV, Spano S, Fasano M, Bracco C et al (2006) The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Sci 15(5):1042–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bellesis AG, Jecrois AM, Hayes JA, Schiffer CA, Royer WE Jr (2018) Assembly of human C-terminal binding protein (CtBP) into tetramers. J Biol Chem 293(23):9101–9112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nichols JC, Schiffer CA, Royer Jr WE (2021) NAD(H) phosphates mediate tetramer assembly of human C-terminal binding protein (CtBP). J Biol Chem 296:100351

  18. Jecrois AM, Dcona MM, Deng X, Bandyopadhyay D, Grossman SR, Schiffer CA et al (2021) Cryo-EM structure of CtBP2 confirms tetrameric architecture. Structure 29(4):310–319e5

  19. Kornberg RD (2007) The molecular basis of eukaryotic transcription. Proc Natl Acad Sci USA 104(32):12955–12961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 152(6):1237–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Wang P, Li Y, Peng H, Zhu Y, Mohandas N et al (2021) Interplay between cofactors and transcription factors in hematopoiesis and hematological malignancies. Signal Transduct Target Ther 6(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haberle V, Stark A (2018) Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 19(10):621–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arnold PR, Wells AD, Li XC (2019) Diversity and emerging roles of enhancer RNA in regulation of gene expression and cell fate. Front Cell Dev Biol 7:377

    Article  PubMed  Google Scholar 

  24. Papadopoulou V, Postigo A, Sanchez-Tillo E, Porter AC, Wagner SD (2010) ZEB1 and CtBP form a repressive complex at a distal promoter element of the BCL6 locus. Biochem J 427(3):541–550

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Xiao Z, Zheng J, Wu J, Hu XL, Yang X et al (2019) ZEB1 Represses neural differentiation and cooperates with CTBP2 to dynamically regulate cell migration during neocortex development. Cell Rep 27(8):2335–2353e6

  26. Chinnadurai G (2009) The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 69(3):731–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao LJ, Kuppuswamy M, Vijayalingam S, Chinnadurai G (2009) Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2. BMC Mol Biol 10:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bialkowska AB, Yang VW, Mallipattu SK (2017) Kruppel-like factors in mammalian stem cells and development. Development 144(5):737–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sue N, Jack BH, Eaton SA, Pearson RC, Funnell AP, Turner J et al (2008) Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol 28(12):3967–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Vliet J, Turner J, Crossley M (2000) Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 28(9):1955–1962

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pollak NM, Hoffman M, Goldberg IJ, Drosatos K (2018) Kruppel-like factors: crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 3(1):132–156

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dewi V, Kwok A, Lee S, Lee MM, Tan YM, Nicholas HR et al (2015) Phosphorylation of Kruppel-like factor 3 (KLF3/BKLF) and C-terminal binding protein 2 (CtBP2) by homeodomain-interacting protein kinase 2 (HIPK2) modulates KLF3 DNA binding and activity. J Biol Chem 290(13):8591–8605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quinlan KG, Verger A, Kwok A, Lee SH, Perdomo J, Nardini M et al (2006) Role of the C-terminal binding protein PXDLS motif binding cleft in protein interactions and transcriptional repression. Mol Cell Biol 26(21):8202–8213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi Y, Sawada J, Sui G, el Affar B, Whetstine JR, Lan F et al (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422(6933):735–738

    Article  CAS  PubMed  Google Scholar 

  35. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    Article  CAS  PubMed  Google Scholar 

  36. Barroilhet L, Yang J, Hasselblatt K, Paranal RM, Ng SK, Rauh-Hain JA et al (2013) C-terminal binding protein-2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors. Oncogene 32(33):3896–3903

    Article  CAS  PubMed  Google Scholar 

  37. Kim JH, Cho EJ, Kim ST, Youn HD (2005) CtBP represses p300-mediated transcriptional activation by direct association with its bromodomain. Nat Struct Mol Biol 12(5):423–428

    Article  CAS  PubMed  Google Scholar 

  38. Zhao LJ, Subramanian T, Zhou Y, Chinnadurai G (2006) Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2. J Biol Chem 281(7):4183–4189

    Article  CAS  PubMed  Google Scholar 

  39. Senyuk V, Sinha KK, Nucifora G (2005) Corepressor CtBP1 interacts with and specifically inhibits CBP activity. Arch Biochem Biophys 441(2):168–173

    Article  CAS  PubMed  Google Scholar 

  40. Pelka P, Ablack JN, Torchia J, Turnell AS, Grand RJ, Mymryk JS (2009) Transcriptional control by adenovirus E1A conserved region 3 via p300/CBP. Nucleic Acids Res 37(4):1095–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang CL, McKinsey TA, Lu JR, Olson EN (2001) Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 276(1):35–39

    Article  CAS  PubMed  Google Scholar 

  42. Kim SC, Kim YS, Jetten AM (2005) Kruppel-like zinc finger protein Gli-similar 2 (Glis2) represses transcription through interaction with C-terminal binding protein 1 (CtBP1). Nucleic Acids Res 33(21):6805–6815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fernandes I, Bastien Y, Wai T, Nygard K, Lin R, Cormier O et al (2003) Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol Cell 11(1):139–150

    Article  CAS  PubMed  Google Scholar 

  44. Quinlan KG, Nardini M, Verger A, Francescato P, Yaswen P, Corda D et al (2006) Specific recognition of ZNF217 and other zinc finger proteins at a surface groove of C-terminal binding proteins. Mol Cell Biol 26(21):8159–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nardini M, Spano S, Cericola C, Pesce A, Massaro A, Millo E et al (2003) CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J 22(12):3122–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bruton RK, Pelka P, Mapp KL, Fonseca GJ, Torchia J, Turnell AS et al (2008) Identification of a second CtBP binding site in adenovirus type 5 E1A conserved region 3. J Virol 82:8476–8486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hickabottom M, Parker GA, Freemont P, Crook T, Allday MJ (2002) Two nonconsensus sites in the Epstein-Barr virus oncoprotein EBNA3A cooperate to bind the co-repressor carboxyl-terminal-binding protein (CtBP). J Biol Chem 277(49):47197–47204

    Article  CAS  PubMed  Google Scholar 

  48. Gocke CB, Yu H (2008) ZNF198 stabilizes the LSD1-CoREST-HDAC1 complex on chromatin through its MYM-type zinc fingers. PLoS One 3:e3255

  49. Du K, Zhang X, Lou Z, Guo P, Zhang F, Wang B et al (2018) MicroRNA485-3p negatively regulates the transcriptional co-repressor CtBP1 to control the oncogenic process in osteosarcoma cells. Int J Biol Sci 14(11):1445–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deng H, Liu J, Deng Y, Han G, Shellman YG, Robinson SE et al (2013) CtBP1 is expressed in melanoma and represses the transcription of p16INK4a and Brca1. J Invest Dermatol 133(5):1294–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chawla AT, Chougoni KK, Joshi PJ, Cororaton AD, Memari P, Stansfield JC et al (2019) CtBP-a targetable dependency for tumor-initiating cell activity and metastasis in pancreatic adenocarcinoma. Oncogenesis 8:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Paliwal S, Pande S, Kovi RC, Sharpless NE, Bardeesy N, Grossman SR (2006) Targeting of C-terminal binding protein (CtBP) by ARF results in p53-independent apoptosis. Mol Cell Biol 26(6):2360–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang R, Asangani IA, Chakravarthi BV, Ateeq B, Lonigro RJ, Cao Q et al (2012) Role of transcriptional corepressor CtBP1 in prostate cancer progression. Neoplasia 14:905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Birts CN, Harding R, Soosaipillai G, Halder T, Azim-Araghi A, Darley M et al (2010) Expression of CtBP family protein isoforms in breast cancer and their role in chemoresistance. Biol Cell 103:1–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhang Y, Kwok JS, Choi PW, Liu M, Yang J, Singh M et al (2016) Pinin interacts with C-terminal binding proteins for RNA alternative splicing and epithelial cell identity of human ovarian cancer cells. Oncotarget 7:11397–11411

    Article  PubMed  PubMed Central  Google Scholar 

  56. Senyuk V, Chakraborty S, Mikhail FM, Zhao R, Chi Y, Nucifora G (2002) The leukemia-associated transcription repressor AML1/MDS1/EVI1 requires CtBP to induce abnormal growth and differentiation of murine hematopoietic cells. Oncogene 21:3232–3240

    Article  CAS  PubMed  Google Scholar 

  57. Wang P, Yu B, Wang C, Zhou S (2020) C-terminal of E1A binding protein 2 promotes the malignancy of osteosarcoma cells via JAK1/Stat3 signaling. J Cell Commun Signal 14:67–76

    Article  PubMed  Google Scholar 

  58. Straza MW, Paliwal S, Kovi RC, Rajeshkumar B, Trenh P, Parker D et al (2010) Therapeutic targeting of C-terminal binding protein in human cancer. Cell Cycle 9:3740–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kovi RC, Paliwal S, Pande S, Grossman SR (2010) An ARF/CtBP2 complex regulates BH3-only gene expression and p53-independent apoptosis. Cell Death Differ 17:513–521

    Article  CAS  PubMed  Google Scholar 

  60. Grooteclaes M, Deveraux Q, Hildebrand J, Zhang Q, Goodman RH, Frisch SM (2003) C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci U S A 100:4568–4573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li C, Xiao XQ, Qian YH, Zhou ZY (2019) The CtBP1-p300-FOXO3a transcriptional complex represses the expression of the apoptotic regulators Bax and Bim in human osteosarcoma cells. J Cell Physiol 234:22365–22377

    Article  CAS  PubMed  Google Scholar 

  62. Duan N, Zhang W, Li Z, Sun L, Song T, Yu Z et al (2021) Overexpression of HIPK2 removes the transrepression of proapoptotic genes mediated by the CtBP1-p300-FOXO3a complex and increases the chemosensitivity in osteosarcoma cells. J Cancer 12:1826–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ding B, Yuan F, Damle PK, Litovchick L, Drapkin R, Grossman SR (2020) CtBP determines ovarian cancer cell fate through repression of death receptors. Cell Death Dis 11:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paliwal S, Kovi RC, Nath B, Chen YW, Lewis BC, Grossman SR (2007) The alternative reading frame tumor suppressor antagonizes hypoxia-induced cancer cell migration via interaction with the COOH-terminal binding protein corepressor. Cancer Res 67:9322–9329

    Article  CAS  PubMed  Google Scholar 

  65. Yu Y, Chen L, Zhao G, Li H, Guo Q, Zhu S et al (2020) RBBP8/CtIP suppresses P21 expression by interacting with CtBP and BRCA1 in gastric cancer. Oncogene 39:1273–1289

    Article  CAS  PubMed  Google Scholar 

  66. Mroz EA, Baird AH, Michaud WA, Rocco JW (2008) COOH-terminal binding protein regulates expression of the p16INK4A tumor suppressor and senescence in primary human cells. Cancer Res 68:6049–6053

    Article  CAS  PubMed  Google Scholar 

  67. Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100:387–390

    Article  PubMed  Google Scholar 

  68. Lee YR, Chen M, Pandolfi PP (2018) The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 19:547–562

    Article  CAS  PubMed  Google Scholar 

  69. Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22:2954–2963

    Article  CAS  PubMed  Google Scholar 

  70. Patel S, Alam A, Pant R, Chattopadhyay S (2019) Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights. Front Immunol 10:2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jung YS, Park JI (2020) Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond beta-catenin and the destruction complex. Exp Mol Med 52:183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R et al (2017) Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol 10:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hamada F, Bienz M (2004) The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell 7:677–685

    Article  CAS  PubMed  Google Scholar 

  74. Yu Y, Hann SS (2019) Novel tumor suppressor lncRNA growth arrest-specific 5 (GAS5) in human cancer. Onco Targets Ther 12:8421–8436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma C, Shi X, Zhu Q, Li Q, Liu Y, Yao Y et al (2016) The growth arrest-specific transcript 5 (GAS5): a pivotal tumor suppressor long noncoding RNA in human cancers. Tumour Biol 37:1437–1444

    Article  CAS  PubMed  Google Scholar 

  76. Yang J, Hao T, Sun J, Wei P, Zhang H (2019) Long noncoding RNA GAS5 modulates alpha-Solanine-induced radiosensitivity by negatively regulating miR-18a in human prostate cancer cells. Biomed Pharmacother 112:108656

  77. Zhang X, Du K, Lou Z, Ding K, Zhang F, Zhu J et al (2019) The CtBP1-HDAC1/2-IRF1 transcriptional complex represses the expression of the long noncoding RNA GAS5 in human osteosarcoma cells. Int J Biol Sci 15:1460–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yeung KT, Yang J (2017) Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol 11:28–39

    Article  PubMed  Google Scholar 

  79. Ribatti D, Tamma R, Annese T (2020) Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol 13:100773

  80. Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD et al (2012) Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61:439–448

    Article  CAS  PubMed  Google Scholar 

  81. Postigo AA, Dean DC (1999) ZEB represses transcription through interaction with the corepressor CtBP. Proc Natl Acad Sci U S A 96:6683–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pena C, Garcia JM, Garcia V, Silva J, Dominguez G, Rodriguez R et al (2006) The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas. Int J Cancer 119:2098–2104

    Article  CAS  PubMed  Google Scholar 

  83. Ichikawa K, Kubota Y, Nakamura T, Weng JS, Tomida T, Saito H et al (2015) MCRIP1, an ERK substrate, mediates ERK-induced gene silencing during epithelial-mesenchymal transition by regulating the co-repressor CtBP. Mol Cell 58:35–46

    Article  CAS  PubMed  Google Scholar 

  84. Di LJ, Fernandez AG, De Siervi A, Longo DL, Gardner K (2010) Transcriptional regulation of BRCA1 expression by a metabolic switch. Nat Struct Mol Biol 17:1406–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tripathi MK, Misra S, Khedkar SV, Hamilton N, Irvin-Wilson C, Sharan C et al (2005) Regulation of BRCA2 gene expression by the SLUG repressor protein in human breast cells. J Biol Chem 280:17163–17171

    Article  CAS  PubMed  Google Scholar 

  86. Minard ME, Ellis LM, Gallick GE (2006) Tiam1 regulates cell adhesion, migration and apoptosis in colon tumor cells. Clin Exp Metastasis 23:301–313

    Article  CAS  PubMed  Google Scholar 

  87. Izumi D, Toden S, Ureta E, Ishimoto T, Baba H, Goel A (2019) TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis 10:267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Paliwal S, Ho N, Parker D, Grossman SR (2012) CtBP2 promotes human cancer cell migration by transcriptional activation of Tiam1. Genes Cancer 3:481–490

    PubMed  PubMed Central  Google Scholar 

  89. Patel J, Baranwal S, Love IM, Patel NJ, Grossman SR, Patel BB (2014) Inhibition of C-terminal binding protein attenuates transcription factor 4 signaling to selectively target colon cancer stem cells. Cell Cycle 13:3506–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7:339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jin W, Scotto KW, Hait WN, Yang JM (2007) Involvement of CtBP1 in the transcriptional activation of the MDR1 gene in human multidrug resistant cancer cells. Biochem Pharmacol 74:851–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen X, Zhang Q, Dang X, Song T, Wang Y, Yu Z et al (2021) Targeting the CtBP1-FOXM1 transcriptional complex with small molecules to overcome MDR1-mediated chemoresistance in osteosarcoma cancer stem cells. J Cancer 12:482–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen Z, Dong WH, Chen Q, Li QG, Qiu ZM (2019) Downregulation of miR-199a-3p mediated by the CtBP2-HDAC1-FOXP3 transcriptional complex contributes to acute lung injury by targeting NLRP1. Int J Biol Sci 15:2627–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen Z, Dong WH, Qiu ZM, Li QG (2020) The monocyte-derived exosomal CLMAT3 activates the CtBP2-p300-NF-kappaB transcriptional complex to induce proinflammatory cytokines in ALI. Mol Ther Nucleic Acids 21:1100–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou P, Wan X, Zou Y, Chen Z, Zhong A (2020) Transforming growth factor beta (TGF-beta) is activated by the CtBP2-p300-AP1 transcriptional complex in chronic renal failure. Int J Biol Sci 16:204–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li H, Zhang C, Yang C, Blevins M, Norris D, Zhao R et al (2020) C-terminal binding proteins 1 and 2 in traumatic brain injury-induced inflammation and their inhibition as an approach for anti-inflammatory treatment. Int J Biol Sci 16:1107–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun X, Xiao L, Chen J, Chen X, Chen X, Yao S et al (2020) DNA methylation is involved in the pathogenesis of osteoarthritis by regulating CtBP expression and CtBP-mediated signaling. Int J Biol Sci 16:994–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang W, Duan N, Zhang Q, Song T, Li Z, Chen X et al (2018) The intracellular NADH level regulates atrophic nonunion pathogenesis through the CtBP2-p300-Runx2 transcriptional complex. Int J Biol Sci 14:2023–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Johnson ER, Matthay MA (2010) Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 23:243–252

    Article  PubMed  PubMed Central  Google Scholar 

  100. Goodman RB, Pugin J, Lee JS, Matthay MA (2003) Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev 14:523–535

    Article  CAS  PubMed  Google Scholar 

  101. Sureshbabu A, Muhsin SA, Choi ME (2016) TGF-beta signaling in the kidney: profibrotic and protective effects. Am J Physiol Renal Physiol 310:F596–F606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meng XM, Tang PM, Li J, Lan HY (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhao Z, Hao D, Wang L, Li J, Meng Y, Li P et al (2019) CtBP promotes metastasis of breast cancer through repressing cholesterol and activating TGF-beta signaling. Oncogene 38:2076–2091

    Article  CAS  PubMed  Google Scholar 

  104. Li HJ, Ray SK, Pan N, Haigh J, Fritzsch B, Leiter AB (2019) Intestinal Neurod1 expression impairs paneth cell differentiation and promotes enteroendocrine lineage specification. Sci Rep 9:19489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ray SK, Li HJ, Metzger E, Schule R, Leiter AB (2014) CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol 34:2308–2317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lee B, Villarreal-Ponce A, Fallahi M, Ovadia J, Sun P, Yu QC et al (2014) Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells. Dev Cell 29:47–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Boxer LD, Barajas B, Tao S, Zhang J, Khavari PA (2014) ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev 28:2013–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Achouri Y, Noel G, Van Schaftingen E (2007) 2-Keto-4-methylthiobutyrate, an intermediate in the methionine salvage pathway, is a good substrate for CtBP1. Biochem Biophys Res Commun 352:903–906

    Article  CAS  PubMed  Google Scholar 

  109. Korwar S, Morris BL, Parikh HI, Coover RA, Doughty TW, Love IM et al (2016) Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal binding protein (CtBP). Bioorg Med Chem 24:2707–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. May T, Yang J, Shoni M, Liu S, He H, Gali R et al (2013) BRCA1 expression is epigenetically repressed in sporadic ovarian cancer cells by overexpression of C-terminal binding protein 2. Neoplasia 15:600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hilbert BJ, Morris BL, Ellis KC, Paulsen JL, Schiffer CA, Grossman SR et al (2015) Structure-guided design of a high affinity inhibitor to human CtBP. ACS Chem Biol 10:1118–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sumner ET, Chawla AT, Cororaton AD, Koblinski JE, Kovi RC, Love IM et al (2017) Transforming activity and therapeutic targeting of C-terminal-binding protein 2 in Apc-mutated neoplasia. Oncogene 36:4810–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dcona MM, Damle PK, Zarate-Perez F, Morris BL, Nawaz Z, Dennis MJ et al (2019) Active-site tryptophan, the target of antineoplastic C-terminal binding protein inhibitors, mediates inhibitor disruption of CtBP oligomerization and transcription coregulatory activities. Mol Pharmacol 96:99–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Birts CN, Nijjar SK, Mardle CA, Hoakwie F, Duriez PJ, Blaydes JP et al (2013) A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chem Sci 4:3046–3057

    Article  CAS  PubMed  Google Scholar 

  115. Blevins MA, Kouznetsova J, Krueger AB, King R, Griner LM, Hu X et al (2015) Small molecule, NSC95397, inhibits the CtBP1-protein partner interaction and CtBP1-mediated transcriptional repression. J Biomol Screen 20:663–672

    Article  CAS  PubMed  Google Scholar 

  116. Dubey NK, Peng BY, Lin CM, Wang PD, Wang JR, Chan CH et al (2018) NSC 95397 suppresses proliferation and induces apoptosis in colon cancer cells through MKP-1 and the ERK1/2 pathway. Int J Mol Sci 19(6):1625

    Article  PubMed Central  CAS  Google Scholar 

  117. Larsson DE, Wickstrom M, Hassan S, Oberg K, Granberg D (2010) The cytotoxic agents NSC-95397, brefeldin A, bortezomib and sanguinarine induce apoptosis in neuroendocrine tumors in vitro. Anticancer Res 30(1):149–156

    CAS  PubMed  Google Scholar 

  118. Jemaa M, Mischitelli M, Fezai M, Almasry M, Faggio C, Lang F (2016) stimulation of suicidal erythrocyte death by the CDC25 inhibitor NSC-95397. Cell Physiol Biochem 40(3–4):597–607

    Article  CAS  PubMed  Google Scholar 

  119. Berg MG, Wan L, Younis I, Diem MD, Soo M, Wang C et al (2012) A quantitative high-throughput in vitro splicing assay identifies inhibitors of spliceosome catalysis. Mol Cell Biol 32(7):1271–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen X, Zhang W, Zhang Q, Song T, Yu Z, Li Z et al (2020) NSM00158 specifically disrupts the CtBP2-p300 interaction to reverse CtBP2-mediated transrepression and prevent the occurrence of nonunion. Mol Cells 43(6):517–529

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Key Research and Development Project of Jiangxi Province (Social Development Field, No. 20202BBGL73059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9010 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z. The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases. J Mol Med 99, 1335–1347 (2021). https://doi.org/10.1007/s00109-021-02107-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02107-w

Keywords

Navigation