Skip to main content

Tissue and cell-type-specific transduction using rAAV vectors in lung diseases

Abstract

Gene therapy of genetically determined diseases, including some pathologies of the respiratory system, requires an efficient method for transgene delivery. Recombinant adeno-associated viral (rAAV) vectors are well studied and employed in gene therapy, as they are relatively simple and low immunogenic and able to efficiently transduce eukaryotic cells. To date, many natural and artificial (with modified capsids) AAV serotypes have been isolated, demonstrating preferential tropism toward different tissues and cells in accordance with the prevalent receptors on the cell surface. However, rAAV-mediated delivery is not strictly specific due to wide tropism of some viral serotypes. Thus, the development of the methods allowing modulating specificity of these vectors could be beneficial in some cases. This review describes various approaches for retargeting rAAV to respiratory cells, for example, using different types of capsid modifications and regulation of a transgene expression by tissue-specific promoters. Part of the review is devoted to the issues of transduction of stem and progenitor lung cells using AAV, which is a complicated task today.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 10 Feb 2021

  2. 2.

    Chuchalin AG, Khaltaev N, Antonov NS, Galkin DV, Manakov LG, Antonini P, Murphy M, Solodovnikov AG, Bousquet J, Pereira MHS, Demko IV (2014) Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int J Chron Obstruct Pulmon Dis 9:963–974

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Patient Registry.http://www.cff.org/Research/Researcher-Resources/Patient-Registry/. Accessed 14 Aug 2020

  4. 4.

    Kenneth I. Berns Colin R. Parrish (2013) Parvoviridae. In: Fields Virology 6th Edition. Lippincott Williams & Wilkins, pp 1768–1791

  5. 5.

    Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, Chapman MS (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A 99:10405–10410

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Drouin LM, Agbandje-McKenna M (2013) Adeno-associated virus structural biology as a tool in vector development. Futur Virol 8:1183–1199

    CAS  Article  Google Scholar 

  7. 7.

    Venkatakrishnan B, Yarbrough J, Domsic J, Bennett A, Bothner B, Kozyreva OG, Samulski RJ, Muzyczka N, McKenna R, Agbandje-McKenna M (2013) Structure and dynamics of adeno-associated virus serotype 1 VP1-unique N-terminal domain and its role in capsid trafficking. J Virol 87:4974–4984

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Fisher-Adams G, Wong KK Jr, Podsakoff G, Forman SJ, Chatterjee S (1996) Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction. Blood 88:492–504

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Li P, Marino MP, Zou J, Argaw T, Morreale MT, Iaffaldano BJ, Reiser J (2018) Efficiency and specificity of targeted integration mediated by the adeno-associated virus serotype 2 Rep 78 Protein. Hum Gene Ther Methods 29:135–145

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Yalkinoglu AO, Heilbronn R, Bürkle A, Schlehofer JR, zur Hausen H (1988) DNA amplification of adeno-associated virus as a response to cellular genotoxic stress. Cancer Res 48:3123–3129

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Berns KI, Muzyczka N (2017) AAV: an overview of unanswered questions. Hum Gene Ther 28:308–313

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3:a004952–a004952

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Ng R, Govindasamy L, Gurda BL, McKenna R, Kozyreva OG, Samulski RJ, Parent KN, Baker TS, Agbandje-McKenna M (2010) Structural characterization of the dual glycan binding adeno-associated virus serotype 6. J Virol 84:12945–12957

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Padron E, Bowman V, Kaludov N, Govindasamy L, Levy H, Nick P, McKenna R, Muzyczka N, Chiorini JA, Baker TS, Agbandje-McKenna M (2005) Structure of adeno-associated virus type 4. J Virol 79:5047–5058

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    DiMattia MA, Nam H-J, Van Vliet K, Mitchell M, Bennett A, Gurda BL, McKenna R, Olson NH, Sinkovits RS, Potter M, Byrne BJ, Aslanidi G, Zolotukhin S, Muzyczka N, Baker TS, Agbandje-McKenna M (2012) Structural insight into the unique properties of adeno-associated virus serotype 9. J Virol 86:6947–6958

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Hileman RE, Fromm JR, Weiler JM, Linhardt RJ (1998) Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20:156–167

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Kern A, Schmidt K, Leder C, Müller OJ, Wobus CE, Bettinger K, Von der Lieth CW, King JA, Kleinschmidt JA (2003) Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 77:11072–11081

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Opie SR, Warrington KH Jr, Agbandje-McKenna M, Zolotukhin S, Muzyczka N (2003) Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J Virol 77:6995–7006

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Michelfelder S, Varadi K, Raupp C, Hunger A, Körbelin J, Pahrmann C, Schrepfer S, Müller OJ, Kleinschmidt JA, Trepel M (2011) Peptide ligands incorporated into the threefold spike capsid domain to re-direct gene transduction of AAV8 and AAV9 in vivo. PLoS One 6:e23101. https://doi.org/10.1371/journal.pone.0023101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Michelfelder S, Kohlschütter J, Skorupa A, Pfennings S, Müller O, Kleinschmidt JA, Trepel M (2009) Successful expansion but not complete restriction of tropism of adeno-associated virus by in vivo biopanning of random virus display peptide libraries. PLoS One 4:e5122

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Körbelin J, Sieber T, Michelfelder S, Lunding L, Spies E, Hunger A, Alawi M, Rapti K, Indenbirken D, Müller OJ, Pasqualini R, Arap W, Kleinschmidt JA, Trepel M (2016) Pulmonary targeting of adeno-associated viral vectors by next-generation sequencing-guided screening of random capsid displayed peptide libraries. Mol Ther 24:1050–1061

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Wu P, Xiao W, Conlon T, Hughes J, Agbandje-McKenna M, Ferkol T, Flotte T, Muzyczka N (2000) Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 74:8635–8647

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA, Kay MA (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82:5887–5911

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Li W, Zhang L, Johnson JS, Zhijian W, Grieger JC, Ping-Jie X, Drouin LM, Agbandje-McKenna M, Pickles RJ, Samulski RJ (2009) Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium. Mol Ther 17:2067–2077

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Excoffon KJDA, JT KJDK, Dickey DD, Murtha M, Keshavjee S, Kaspar BK, Zabner J, Schaffer DV (2009) Directed evolution of adeno-associated virus to an infectious respiratory virus. Proc Natl Acad Sci 106:3865–3870

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Steines B, Dickey DD, Bergen J, Excoffon KJ, Weinstein JR, Li X, Yan Z, Abou Alaiwa MH, Shah VS, Bouzek DC, Powers LS, Gansemer ND, Ostedgaard LS, Engelhardt JF, Stoltz DA, Welsh MJ, Sinn PL, Schaffer DV, Zabner J (2016) gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI. Insight 1:e88728

    Google Scholar 

  27. 27.

    Liu X, Luo M, Guo C, Yan Z, Wang Y, Engelhardt JF (2007) Comparative biology of rAAV transduction in ferret, pig and human airway epithelia. Gene Ther 14:1543–1548

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Yan Z, Sun X, Feng Z, Li G, Fisher JT, Stewart ZA, Engelhardt JF (2015) Optimization of recombinant adeno-associated virus-mediated expression for large transgenes, using a synthetic promoter and tandem array enhancers. Hum Gene Ther 26:334–346

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Bánfi B, Horswill AR, Stoltz DA, McCray PB Jr, Welsh MJ, Zabner J (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487:109–113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Cooney AL, Thornell IM, Singh BK, Shah VS, Stoltz DA, McCray PB Jr, Zabner J, Sinn PL (2019) A novel AAV-mediated gene delivery system corrects CFTR function in pigs. Am J Respir Cell Mol Biol 61:747–754

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Weitzman MD, Michael Linden R (2012) Adeno-associated virus biology. Adeno-associated Virus 1–23

  32. 32.

    Rossi A, Dupaty L, Aillot L, Zhang L, Gallien C, Hallek M, Odenthal M, Adriouch S, Salvetti A, Büning H (2019) Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity. Sci Rep 9:3631

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Nguyen LK, Kolch W, Kholodenko BN (2013) When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun Signal 11:52

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-McKenna M, Herzog RW, Weigel-Van Aken KA, Hobbs JA, Zolotukhin S, Muzyczka N, Srivastava A (2008) Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 381:194–202

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Sen D, Gadkari RA, Sudha G, Gabriel N, Kumar YS, Selot R, Samuel R, Rajalingam S, Ramya V, Nair SC, Srinivasan N, Srivastava A, Jayandharan GR (2013) Targeted modifications in adeno-associated virus serotype 8 capsid improves its hepatic gene transfer efficiency in vivo. Hum Gene Ther Methods 24:104–116

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Zhong L, Zhao W, Wu J, Li B, Zolotukhin S, Govindasamy L, Agbandje-McKenna M, Srivastava A (2007) A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis. Mol Ther 15:1323–1330

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Qi YF, Li QH, Shenoy V, Zingler M, Jun JY, Verma A, Katovich MJ, Raizada MK (2013) Comparison of the transduction efficiency of tyrosine-mutant adeno-associated virus serotype vectors in kidney. Clin Exp Pharmacol Physiol 40:53–55

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Petrs-Silva H, Dinculescu A, Li Q, Min S-H, Chiodo V, Pang J-J, Zhong L, Zolotukhin S, Srivastava A, Lewin AS, Hauswirth WW (2009) High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 17:463–471

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Martino AT, Basner-Tschakarjan E, Markusic DM, Finn JD, Hinderer C, Zhou S, Ostrov DA, Srivastava A, Ertl HCJ, Terhorst C, High KA, Mingozzi F, Herzog RW (2013) Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells. Blood 121:2224–2233

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Qiao C, Zhang W, Yuan Z, Shin J-H, Li J, Jayandharan GR, Zhong L, Srivastava A, Xiao X, Duan D (2010) Adeno-associated virus serotype 6 capsid tyrosine-to-phenylalanine mutations improve gene transfer to skeletal muscle. Hum Gene Ther 21:1343–1348

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Kauss MA, Smith LJ, Zhong L, Srivastava A, Wong KK Jr, Chatterjee S (2010) Enhanced long-term transduction and multilineage engraftment of human hematopoietic stem cells transduced with tyrosine-modified recombinant adeno-associated virus serotype 2. Hum Gene Ther 21:1129–1136

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Li M, Jayandharan GR, Li B, Ling C, Ma W, Srivastava A, Zhong L (2010) High-efficiency transduction of fibroblasts and mesenchymal stem cells by tyrosine-mutant AAV2 vectors for their potential use in cellular therapy. Hum Gene Ther 21:1527–1543

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Sen D, Balakrishnan B, Gabriel N, Agrawal P, Roshini V, Samuel R, Srivastava A, Jayandharan GR (2013) Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy. Sci Rep 3:1832

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  44. 44.

    Martini SV, Silva AL, Ferreira D, Rabelo R, Ornellas FM, Gomes K, Rocco PRM, Petrs-Silva H, Morales MM (2016) Tyrosine mutation in AAV9 capsid improves gene transfer to the mouse lung. Cell Physiol Biochem 39:544–553

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    van Lieshout LP, Domm JM, Rindler TN, Frost KL, Sorensen DL, Medina SJ, Booth SA, Bridges JP, Wootton SK (2018) A novel triple-mutant AAV6 capsid induces rapid and potent transgene expression in the muscle and respiratory tract of mice. Mol Ther Methods Clin Dev 9:323–329

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Limberis MP, Vandenberghe LH, Zhang L, Pickles RJ, Wilson JM (2009) Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 17:294–301

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Hida K, Lai SK, Suk JS, Won SY, Boyle MP, Hanes J (2011) Common gene therapy viral vectors do not efficiently penetrate sputum from cystic fibrosis patients. PLoS One 6:e19919

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    O’Sullivan BP, Freedman SD (2009) Cystic fibrosis. Lancet 373:1891–1904

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Voynow JA, Rubin BK (2009) Mucins, mucus, and sputum. Chest 135:505–512

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Walters RW, Pilewski JM, Chiorini JA, Zabner J (2002) Secreted and transmembrane mucins inhibit gene transfer with AAV4 more efficiently than AAV5. J Biol Chem 277:23709–23713

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Schuster BS, Kim AJ, Kays JC, Kanzawa MM, Guggino WB, Boyle MP, Rowe SM, Muzyczka N, Suk JS, Hanes J (2014) Overcoming the cystic fibrosis sputum barrier to leading adeno-associated virus gene therapy vectors. Mol Ther 22:1484–1493

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Duncan GA, Kim N, Colon-Cortes Y, Rodriguez J, Mazur M, Birket SE, Rowe SM, West NE, Livraghi-Butrico A, Boucher RC, Hanes J, Aslanidi G, Suk JS (2018) An adeno-associated viral vector capable of penetrating the mucus barrier to inhaled gene therapy. Mol Ther Methods Clin Dev 9:296–304

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandje-McKenna M, Samulski RJ (2006) Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol 80:11393–11397

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, Masurier C (2010) Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 21:704–712

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Nidetz NF, McGee MC, Tse LV, Li C, Cong L, Li Y, Huang W (2020) Adeno-associated viral vector-mediated immune responses: understanding barriers to gene delivery. Pharmacol Ther 207:107453

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Li C, Narkbunnam N, Samulski RJ, Asokan A, Hu G, Jacobson LJ, Manco-Johnson MJ, Monahan PE, Investigators JOS (2012) Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther 19:288–294

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Colella P, Ronzitti G, Mingozzi F (2018) Emerging issues in AAV-mediated gene therapy. Mol Ther Methods Clin Dev 8:87–104

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Mingozzi F, High KA (2013) Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122:23–36

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Petry H, Brooks A, Orme A, Wang P, Liu P, Xie J, Kretschmer P, Qian HS, Hermiston TW, Harkins RN (2008) Effect of viral dose on neutralizing antibody response and transgene expression after AAV1 vector re-administration in mice. Gene Ther 15:54–60

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Gruntman AM, Mueller C, Flotte TR, Gao G (2012) Gene transfer in the lung using recombinant adeno-associated virus. Curr Protoc Microbiol Chapter 14:Unit14D.2. https://doi.org/10.1002/9780471729259.mc14d02s26, 26

  61. 61.

    Halbert CL, Miller AD, McNamara S, Emerson J, Gibson RL, Ramsey B, Aitken ML (2006) Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: implications for gene therapy using AAV vectors. Hum Gene Ther 17:440–447

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    High KA, Aubourg P (2011) rAAV human trial experience. Methods Mol Biol 807:429–457

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Auricchio A, O’Connor E, Weiner D, Gao G-P, Hildinger M, Wang L, Calcedo R, Wilson JM (2002) Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 110:499–504

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Sandalon Z, Bruckheimer EM, Lustig KH, Rogers LC, Peluso RW, Burstein H (2004) Secretion of a TNFR:Fc fusion protein following pulmonary administration of pseudotyped adeno-associated virus ectors. J Virol 78:12355–12365

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Limberis MP, Wilson JM (2006) Adeno-associated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proc Natl Acad Sci U S A 103:12993–12998

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Arumugham VB, Rayi A (2021) Intravenous immunoglobulin (IVIG). In: StatPearls. StatPearls Publishing, Treasure Island (FL)

  67. 67.

    Huttner NA, Girod A, Perabo L, Edbauer D, Kleinschmidt JA, Büning H, Hallek M (2003) Genetic modifications of the adeno-associated virus type 2 capsid reduce the affinity and the neutralizing effects of human serum antibodies. Gene Ther 10:2139–2147

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Kurosaki F, Uchibori R, Mato N, Sehara Y, Saga Y, Urabe M, Mizukami H, Sugiyama Y, Kume A (2017) Optimization of adeno-associated virus vector-mediated gene transfer to the respiratory tract. Gene Ther 24:290–297

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Santry LA, Ingrao JC, Yu DL, de Jong JG, van Lieshout LP, Wood GA, Wootton SK (2017) AAV vector distribution in the mouse respiratory tract following four different methods of administration. BMC Biotechnol 17:43

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Gray SJ, Foti SB, Schwartz JW, Bachaboina L, Taylor-Blake B, Coleman J, Ehlers MD, Zylka MJ, McCown TJ, Samulski RJ (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Phillips MI, Ian Phillips M, Tang Y, Schmidt-Ott K, Qian K, Kagiyama S (2002) Vigilant vector: heart-specific promoter in an adeno-associated virus vector for cardioprotection. Hypertension 39:651–655

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Chen S-J, Johnston J, Sandhu A, Bish LT, Hovhannisyan R, Jno-Charles O, Sweeney HL, Wilson JM (2013) Enhancing the utility of adeno-associated virus gene transfer through inducible tissue-specific expression. Hum Gene Ther Methods 24:270–278

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Pacak CA, Sakai Y, Thattaliyath BD, Mah CS, Byrne BJ (2008) Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. Genet Vaccines Ther 6:13

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Sawaya PL, Stripp BR, Whitsett JA, Luse DS (1993) The lung-specific CC10 gene is regulated by transcription factors from the AP-1, octamer, and hepatocyte nuclear factor 3 families. Mol Cell Biol 13:3860–3871

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Stripp BR, Sawaya PL, Luse DS, Wikenheiser KA, Wert SE, Huffman JA, Lattier DL, Singh G, Katyal SL, Whitsett JA (1992) cis-acting elements that confer lung epithelial cell expression of the CC10 gene. J Biol Chem 267:14703–14712

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Gubrij IB, Martin SR, Pangle AK, Kurten R, Johnson LG (2014) Attenuation of monocrotaline-induced pulmonary hypertension by luminal adeno-associated virus serotype 9 gene transfer of prostacyclin synthase. Hum Gene Ther 25:498–505

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Malaya NK, Kaladze NN, Malyy KD (2015) Mucosal antiinflammatory factor secretoglobin SCGB1A1. Russian Pulmonology 25:492–496

    Article  Google Scholar 

  78. 78.

    Singh G, Katyal SL (1997) Clara cells and Clara cell 10 kD protein (CC10). Am J Respir Cell Mol Biol 17:141–143

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Flotte TR (2001) Recombinant adeno-associated virus vectors for cystic fibrosis gene therapy. Curr Opin Mol Ther 3:497–502

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Aitken ML, Moss RB, Waltz DA, Dovey ME, Tonelli MR, McNamara SC, Gibson RL, Ramsey BW, Carter BJ, Reynolds TC (2001) A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther 12:1907–1916

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Wagner JA, Nepomuceno IB, Messner AH, Moran ML, Batson EP, Dimiceli S, Brown BW, Desch JK, Norbash AM, Conrad CK, Guggino WB, Flotte TR, Wine JJ, Carter BJ, Reynolds TC, Moss RB, Gardner P (2002) A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies. Hum Gene Ther 13:1349–1359

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Zhou J, You Y, Zabner J, Ryan AJ, Mallampalli RK (2004) The CCT promoter directs high-level transgene expression in distal lung epithelial cell lines. Am J Respir Cell Mol Biol 30:61–68

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    van Haasteren J, Hyde SC, Gill DR (2018) Lessons learned from lung and liver in-vivo gene therapy: implications for the future. Expert Opin Biol Ther 18:959–972

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. 84.

    Adeno-associated virus-based gene therapy for treating lung surfactant deficiencies. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/14055

  85. 85.

    Chao CN, Lin MC, Fang CY, Chen PL, Chang D, Shen CH, Wang M (2016) Gene therapy for human lung adenocarcinoma using a suicide gene driven by a lung-specific promoter delivered by JC virus-like particles. PLoS One 11:e0157865

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. 86.

    Degiulio JV, Kaufman CD, Dean DA (2010) The SP-C promoter facilitates alveolar type II epithelial cell-specific plasmid nuclear import and gene expression. Gene Ther 17:541–549

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Glasser SW, Eszterhas SK, Detmer EA, Maxfield MD, Korfhagen TR (2005) The murine SP-C promoter directs type II cell-specific expression in transgenic-mice. Am J Physiol Lung Cell Mol Physiol 288:L625–L632

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Gruh I, Wunderlich S, Winkler M, Schwanke K, Heinke J, Blömer U, Ruhparwar A, Rohde B, Li RK, Haverich A, Martin U (2008) Human CMV immediate-early enhancer: a useful tool to enhance cell-type-specific expression from lentiviral vectors. J Gene Med 10:21–32

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Ostrowski LE, Hutchins JR, Zakel K, O’Neal WK (2003) Targeting expression of a transgene to the airway surface epithelium using a ciliated cell-specific promoter. Mol Ther 8:637–645

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Ostrowski LE, Yin W, Diggs PS, Rogers TD, O’Neal WK, Grubb BR (2007) Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice. Gene Ther 14:1492–1501

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Bañuls L, Pellicer D, Castillo S, Navarro-García MM, Magallón M, González C, Dasí F (2020) Gene therapy in rare respiratory diseases: what have we learned so far?. J Clin Med Res 9. https://doi.org/10.3390/jcm9082577

  92. 92.

    Shaykhiev R, Crystal RG (2014) Early events in the pathogenesis of chronic obstructive pulmonary disease. Smoking-induced reprogramming of airway epithelial basal progenitor cells Ann Am Thorac Soc 11(Suppl 5):S252–S258

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Ponnazhagan S, Mukherjee P, Wang XS, Qing K, Kube DM, Mah C, Kurpad C, Yoder MC, Srour EF, Srivastava A (1997) Adeno-associated virus type 2-mediated transduction in primary human bone marrow-derived CD34 hematopoietic progenitor cells: donor variation and correlation of transgene expression with cellular differentiation. J Virol 71:8262–8267

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Walsh CE, Nienhuis AW, Samulski RJ, Brown MG, Miller JL, Young NS, Liu JM (1994) Phenotypic correction of Fanconi anemia in human hematopoietic cells with a recombinant adeno-associated virus vector. J Clin Invest 94:1440–1448

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Miller JL, Donahue RE, Sellers SE, Samulski RJ, Young NS, Nienhuis AW (1994) Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells. Proc Natl Acad Sci U S A 91:10183–10187

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Handa A, Muramatsu S-I, Qiu J, Mizukami H, Brown KE (2000) Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J Gen Virol 81:2077–2084

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Wang J, Exline CM, DeClercq JJ, Llewellyn GN, Hayward SB, Li PW-L, Shivak DA, Surosky RT, Gregory PD, Holmes MC, Cannon PM (2015) Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33:1256–1263

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Veldwijk MR, Sellner L, Stiefelhagen M, Kleinschmidt JA, Laufs S, Topaly J, Fruehauf S, Zeller WJ, Wenz F (2010) Pseudotyped recombinant adeno-associated viral vectors mediate efficient gene transfer into primary human CD34+ peripheral blood progenitor cells. Cytotherapy 12:107–112

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Kumar S, Mahendra G, Nagy TR, Ponnazhagan S (2004) Osteogenic differentiation of recombinant adeno-associated virus 2-transduced murine mesenchymal stem cells and development of an immunocompetent mouse model for ex vivo osteoporosis gene therapy. Hum Gene Ther 0:041207062302001

    Article  Google Scholar 

  100. 100.

    Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR (2007) Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 14:804–813

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Kim JH, Park S-N, Suh H (2007) Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus. Yonsei Med J 48:109–119

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Chng K, Larsen SR, Zhou S, Fraser Wright J, Martiniello-Wilks R, Rasko JEJ (2007) Specific adeno-associated virus serotypes facilitate efficient gene transfer into human and non-human primate mesenchymal stromal cells. The Journal of Gene Medicine 9:22–32

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Gabriel N, Samuel R, Jayandharan GR (2017) Targeted delivery of AAV-transduced mesenchymal stromal cells to hepatic tissue for ex vivo gene therapy. J Tissue Eng Regen Med 11:1354–1364

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Mitsui K, Suzuki K, Aizawa E, Kawase E, Suemori H, Nakatsuji N, Mitani K (2009) Gene targeting in human pluripotent stem cells with adeno-associated virus vectors. Biochem Biophys Res Commun 388:711–717

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Khan IF, Hirata RK, Russell DW (2011) AAV-mediated gene targeting methods for human cells. Nat Protoc 6:482–501

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Zeitlin PL, Chu S, Conrad C, McVeigh U, Ferguson K, Flotte TR, Guggino WB (1995) Alveolar stem cell transduction by an adeno-associated viral vector. Gene Ther 2:623–631

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Vaidyanathan S, Salahudeen AA, Sellers ZM, Bravo DT (2019) Highly efficient repair of the ΔF508 mutation in airway stem cells of cystic fibrosis patients with functional rescue of the differentiated epithelia. bioRxiv

  108. 108.

    Vaidyanathan S, Salahudeen AA, Sellers ZM, Bravo DT, Choi SS, Batish A, Le W, Baik R, de la OS, Kaushik MP, Galper N, Lee CM, Teran CA, Yoo JH, Bao G, Chang EH, Patel ZM, Hwang PH, Wine JJ, Milla CE, Desai TJ, Nayak JV, Kuo CJ, Porteus MH (2020) High-efficiency, selection-free gene repair in airway stem cells from cystic fibrosis patients rescues CFTR function in differentiated epithelia. Cell Stem Cell 26:161–171.e4

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Li X, Rossen N, Sinn PL, Hornick AL, Steines BR, Karp PH, Ernst SE, Adam RJ, Moninger TO, Levasseur DN, Zabner J (2013) Integrin α6β4 identifies human distal lung epithelial progenitor cells with potential as a cell-based therapy for cystic fibrosis lung disease. PLoS One 8:e83624

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. 110.

    Liu X, Luo M, Guo C, Yan Z, Wang Y, Lei-Butters DCM, Engelhardt JF (2009) Analysis of adeno-associated virus progenitor cell transduction in mouse lung. Mol Ther 17:285–293

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Guggino WB, Yanda MK, Cebotaru CV, Cebotaru L (2020) Transduction of surface and basal cells in rhesus macaque lung following repeat dosing with AAV1CFTR. Hum Gene Ther 31:1010–1023

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Ellis BL, Hirsch ML, Barker JC, Connelly JP, Steininger RJ, Porteus MH (2013) A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J 10:74

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Raj K, Ogston P, Beard P (2001) Virus-mediated killing of cells that lack p53 activity. Nature 412:914–917

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Hirsch ML, Fagan BM, Dumitru R, Bower JJ, Yadav S, Porteus MH, Pevny LH, Samulski RJ (2011) Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells. PLoS One 6:e27520

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Rapti K, Stillitano F, Karakikes I, Nonnenmacher M, Weber T, Hulot J-S, Hajjar RJ (2015) Effectiveness of gene delivery systems for pluripotent and differentiated cells. Mol Ther Methods Clin Dev 2:14067

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116.

    Brown N, Song L, Kollu NR, Hirsch ML (2017) Adeno-associated virus vectors and stem cells: friends or foes? Hum Gene Ther 28:450–463

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Hogan BLM, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CCW, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE (2014) Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15:123–138

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Wang D, Xu S, Chen H, Zhong L (2015) The associations between triglyceride to high-density lipoprotein cholesterol ratios and the risks of gestational diabetes mellitus and large-for-gestational-age infant. Clinical

  119. 119.

    Cooney AL, Singh BK, Sinn PL (2015) Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon in vivo delivery. Mol Ther 23:667–674

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Boheler KR (2009) Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J Cell Physiol 221:10–17

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Ebert PJ, Timmer JR, Nakada Y, Helms AW, Parab PB, Liu Y, Hunsaker TL, Johnson JE (2003) Zic1 represses Math1 expression via interactions with the Math1 enhancer and modulation of Math1 autoregulation. Development 130:1949–1959

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Aruga J (2018) Zic family: evolution, development and disease. Springer

  123. 123.

    Sarvagalla S, Kolapalli SP, Vallabhapurapu S (2019) The two sides of YY1 in cancer: a friend and a foe. Front Oncol 9

  124. 124.

    Wang J, Wu X, Wei C, Huang X, Ma Q, Huang X, Faiola F, Guallar D, Fidalgo M, Huang T, Peng D, Chen L, Yu H, Li X, Sun J, Liu X, Cai X, Chen X, Wang L, Ren J, Wang J, Ding J (2018) YY1 positively regulates transcription by targeting promoters and super-enhancers through the BAF complex in embryonic stem cells. Stem Cell Reports 10:1324–1339

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Wang J, Cheng H, Li X, Lu W, Wang K, Wen T (2013) Regulation of neural stem cell differentiation by transcription factors HNF4-1 and MAZ-1. Mol Neurobiol 47:228–240

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Ray BK, Murphy R, Ray P, Ray A (2002) SAF-2, a splice variant of SAF-1, acts as a negative regulator of transcription. J Biol Chem 277:46822–46830

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Duncan DD, Stupakoff A, Hedrick SM, Marcu KB, Siu G (1995) A Myc-associated zinc finger protein binding site is one of four important functional regions in the CD4 promoter. Mol Cell Biol 15:3179–3186

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    (2009) CCAAT/enhancer binding protein-β (CEBPB; C/EBPβ). Science-Business eXchange 2:1379–1379

  129. 129.

    Website. OMIM Entry - * 607102 - WT1 transcription factor; WT1. [cited 13 Jun 2020]. Available: https://www.omim.org/entry/607102. Accessed 20 Jul 2020

  130. 130.

    LaMarca HL, Visbal AP, Creighton CJ, Liu H, Zhang Y, Behbod F, Rosen JM (2010) CCAAT/enhancer binding protein beta regulates stem cell activity and specifies luminal cell fate in the mammary gland. Stem Cells 28:535–544

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Hossain A, Saunders GF (2001) The human sex-determining GeneSRYIs a direct target ofWT1. J Biol Chem 276:16817–16823

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Website. Wagner KD, Wagner N, Schley G, Theres H, Scholz H. The Wilms’ tumor suppressor Wt1 encodes a transcriptional activator of the class IV POU-domain factor Pou4f2 (Brn-3b). Gene. 2003. Available: https://www.sciencedirect.com/science/article/pii/S0378111902012313. Accessed 20 Jul 2020

  133. 133.

    Website. SP1 Sp1 transcription factor [Homo sapiens (human)] - Gene - NCBI. [cited 13 Jun 2020]. Available: https://www.ncbi.nlm.nih.gov/gene/6667. Accessed 20 Jul 2020

  134. 134.

    Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM (2018) Mechanisms of transcriptional regulation by p53. Cell Death Differ 25:133–143

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2:a000935

    PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Lin T, Chao C, S ’ichi S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165–171

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Chauhan BK (2004) Functional properties of natural human PAX6 and PAX6(5a) mutants. Invest Ophthalmol Vis Sci 45:385–392

    PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Chen D, Murphy B, Sung R, Bromberg JS (2003) Adaptive and innate immune responses to gene transfer vectors: role of cytokines and chemokines in vector function. Gene Ther 10:991–998

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Flotte TR, Afione SA, Conrad C, McGrath SA, Solow R, Oka H, Zeitlin PL, Guggino WB, Carter BJ (1993) Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci 90:10613–10617

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Damdindorj L, Karnan S, Ota A, Takahashi M, Konishi Y, Hossain E, Hosokawa Y, Konishi H (2012) Assessment of the long-term transcriptional activity of a 550-bp-long human β-actin promoter region. Plasmid 68:195–200

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Zeng X, Chen J, Sanchez JF, Coggiano M, Dillon-Carter O, Petersen J, Freed WJ (2003) Stable expression of hrGFP by mouse embryonic stem cells: promoter activity in the undifferentiated state and during dopaminergic neural differentiation. Stem Cells 21:647–653

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Liew C-G, Draper JS, Walsh J, Moore H, Andrews PW (2007) Transient and stable transgene expression in human embryonic stem cells. Stem Cells 25:1521–1528

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Norrman K, Fischer Y, Bonnamy B, Wolfhagen Sand F, Ravassard P, Semb H (2010) Quantitative comparison of constitutive promoters in human ES cells. PLoS One 5:e12413

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  144. 144.

    Prösch S, Stein J, Staak K, Liebenthal C, Volk HD, Krüger DH (1996) Inactivation of the very strong HCMV immediate early promoter by DNA CpG methylation in vitro. Biol Chem Hoppe Seyler 377:195–201

    PubMed  Article  PubMed Central  Google Scholar 

  145. 145.

    Damdindorj L, Karnan S, Ota A, Hossain E, Konishi Y, Hosokawa Y, Konishi H (2014) A comparative analysis of constitutive promoters located in adeno-associated viral vectors. PLoS One 9:e106472

    PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    E. O, Subkhankulova T, Tolmachov T (2013) Silencing of transgene expression: a gene therapy perspective. Gene Therapy - Tools and Potential Applications

  147. 147.

    Ellis J (2005) Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 16:1241–1246

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148.

    Pfaff N, Lachmann N, Ackermann M, Kohlscheen S, Brendel C, Maetzig T, Niemann H, Antoniou MN, Grez M, Schambach A, Cantz T, Moritz T (2013) A ubiquitous chromatin opening element prevents transgene silencing in pluripotent stem cells and their differentiated progeny. Stem Cells 31:488–499

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  149. 149.

    Herbst F, Ball CR, Tuorto F, Nowrouzi A, Wang W, Zavidij O, Dieter SM, Fessler S, van der Hoeven F, Kloz U, Lyko F, Schmidt M, von Kalle C, Glimm H (2012) Extensive methylation of promoter sequences silences lentiviral transgene expression during stem cell differentiation in vivo. Mol Ther 20:1014–1021

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Raya A, Rodríguez-Pizà I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castellà M, Río P, Sleep E, González F, Tiscornia G, Garreta E, Aasen T, Veiga A, Verma IM, Surrallés J, Bueren J, Izpisúa Belmonte JC (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Saha K, Sontheimer EJ, Brooks PJ, Dwinell MR, Gersbach CA, Liu DR, Murray SA, Tsai SQ, Wilson RC, Anderson DG, Asokan A, Banfield JF, Bankiewicz KS, Bao G, Bulte JWM, Bursac N, Campbell JM, Carlson DF, Chaikof EL, Chen ZY, Cheng RH, Clark KJ, Curiel DT, Dahlman JE, Deverman BE, Dickinson ME, Doudna JA, Ekker SC, Emborg ME, Feng G, Freedman BS, Gamm DM, Gao G, Ghiran IC, Glazer PM, Gong S, Heaney JD, Hennebold JD, Hinson JT, Khvorova A, Kiani S, Lagor WR, Lam KS, Leong KW, Levine JE, Lewis JA, Lutz CM, Ly DH, Maragh S, McCray PB Jr, McDevitt TC, Mirochnitchenko O, Morizane R, Murthy N, Prather RS, Ronald JA, Roy S, Roy S, Sabbisetti V, Saltzman WM, Santangelo PJ, Segal DJ, Shimoyama M, Skala MC, Tarantal AF, Tilton JC, Truskey GA, Vandsburger M, Watts JK, Wells KD, Wolfe SA, Xu Q, Xue W, Yi G, Zhou J (2021) SCGE Consortium. The NIH somatic cell genome editing program. Nature 592:195–204

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Lisowski L, Tay SS, Alexander IE (2015) Adeno-associated virus serotypes for gene therapeutics. Curr Opin Pharmacol 24:59–67

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153.

    Nance ME, Duan D (2015) Perspective on adeno-associated virus capsid modification for Duchenne muscular dystrophy gene therapy. Hum Gene Ther 26:786–800

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Cioffi DL, Pandey S, Alvarez DF, Cioffi EA (2012) Terminal sialic acids are an important determinant of pulmonary endothelial barrier integrity. Am J Phys Lung Cell Mol Phys 302:L1067–L1077

    CAS  Google Scholar 

  155. 155.

    Li W, Zhang L, Wu Z, Pickles RJ, Samulski RJ (2011) AAV-6 mediated efficient transduction of mouse lower airways. Virology 417:327–333

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    de Martins MF, Martins P, Gonçalves CA (2019) Presence of N-acetylgalactosamine/galactose residues on bronchioloalveolar cells during rat postnatal development. Eur J Histochem 63. https://doi.org/10.4081/ejh.2019.3040

  157. 157.

    Bell CL, Vandenberghe LH, Bell P, Limberis MP, Gao G-P, Van Vliet K, Agbandje-McKenna M, Wilson JM (2011) The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest 121:2427–2435

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Hamilton BA, Li X, Pezzulo AA, Abou Alaiwa MH, Zabner J (2019) Polarized AAVR expression determines infectivity by AAV gene therapy vectors. Gene Ther 26:240–249

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Shimizu S, Gabazza EC, Hayashi T, Ido M, Adachi Y, Suzuki K (2000) Thrombin stimulates the expression of PDGF in lung epithelial cells. Am J Phys Lung Cell Mol Phys 279:L503–L510

    CAS  Google Scholar 

  160. 160.

    Hackett NR, Shaykhiev R, Walters MS, Wang R, Zwick RK, Ferris B, Witover B, Salit J, Crystal RG (2011) The human airway epithelial basal cell transcriptome. PLoS One 6:e18378

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Teoh CM, Tan SSL, Tran T (2015) Integrins as therapeutic targets for respiratory diseases. Curr Mol Med 15:714–734

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Affiliations

Authors

Contributions

All authors, namely, Kochergin-Nikitsky KS, Belova LL, Lavrov AV, and Smirnikhina SA, contributed to the formulation of the article idea, literature search and data analysis, article drafting, and correction of final text. Kochergin-Nikitsky KS, Belova LL, Lavrov AV, and Smirnikhina SA revised the article critically for important intellectual content and finally approved the version to be submitted.

Corresponding author

Correspondence to Konstantin Kochergin-Nikitsky.

Ethics declarations

Ethical standards

The manuscript does not contain clinical studies or patient data.

Ethics approval

This article does not contain any studies with human or animal subjects performed by the authors.

Consent to participate

This article does not contain any studies with human or animal subjects performed by the authors.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kochergin-Nikitsky, K., Belova, L., Lavrov, A. et al. Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. J Mol Med 99, 1057–1071 (2021). https://doi.org/10.1007/s00109-021-02086-y

Download citation

Keywords

  • Adeno-associated virus
  • Recombinant capsids
  • Tissue-specific promoters
  • Cystic fibrosis
  • Lung airway mucus
  • Stem cells