Skip to main content
Log in

Insulin-mediated immune dysfunction in the development of preeclampsia

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Epidemiological observations implicate insulin resistance as a predisposing factor in the development of preeclampsia (PE). It is also well established that PE manifests in the context of a dysregulated immune response at the maternal-foetal interface, though all the underlying drivers of such immune dysregulation remains to be accounted for. Although it has long been known that various immune cells express insulin receptors following immune activation, it is only recently that insulin signalling has been shown to play a key role in immune cell differentiation, survival and effector function through its canonical activation of the PI3K/Akt/mTOR pathway. Here we argue that hyperinsulinemia, manifesting either from insulin resistance or from intensive insulin therapy, likely plays a direct role in driving immune cell dysfunction which plays a central role in the development of PE. This line of reasoning also explains the superior results of insulin-sparing interventions compared to intensive insulin therapy as monotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PE:

Preeclampsia

GD:

Gestational diabetes

AGE:

Advance glycation end products

RAGE:

Receptor for AGE

mTOR:

Mechanistic target of rapamycin

IR:

Insulin receptor

MAPK:

Mitogen-activated protein kinase

PI3K:

Phosphoinositide 3-kinase

IC:

Immune checkpoint

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death-ligand 1

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

References

  1. Bryson CL, Ioannou GN, Rulyak SJ, Critchlow C (2003) Association between gestational diabetes and pregnancy-induced hypertension. Am J Epidemiol 158:1148–1153

    Article  PubMed  Google Scholar 

  2. Schneider S, Freerksen N, Röhrig S, Hoeft B, Maul H (2012) Gestational diabetes and preeclampsia - similar risk factor profiles? Early Hum Dev 88:179–184

    Article  PubMed  Google Scholar 

  3. Lee J, Ouh YT, Ahn KH, Hong SC, Oh MJ, Kim HJ, Cho GJ (2017) Preeclampsia: a risk factor for gestational diabetes mellitus in subsequent pregnancy. PLoS One 12:e0178150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Vestgaard M, Sommer MC, Ringholm L et al (2018) Prediction of preeclampsia in type 1 diabetes in early pregnancy by clinical predictors: a systematic review. J Matern Neonatal Med 31:1933–1939

  5. Cavero-Redondo I, Martínez-Vizcaíno V, Soriano-Cano A, Martínez-Hortelano JA, Sanabria-Martínez G, Álvarez-Bueno C (2018) Glycated haemoglobin A1c as a predictor of preeclampsia in type 1 diabetic pregnant women: a systematic review and meta-analysis. Pregnancy Hypertens 14:49–54

    Article  CAS  PubMed  Google Scholar 

  6. Holmes VA, Young IS, Patterson CC, Pearson DWM, Walker JD, Maresh MJA, McCance DR, for the Diabetes and Pre-eclampsia Intervention Trial Study Group (2011) Optimal glycemic control, pre-eclampsia, and gestational hypertension in women with type 1 diabetes in the Diabetes and Pre-Eclampsia Intervention Trial. Diabetes Care 34:1683–1688

    Article  PubMed  PubMed Central  Google Scholar 

  7. Valdés E, Sepúlveda-Martínez Á, Manukián B, Parra-Cordero M (2014) Assessment of pregestational insulin resistance as a risk factor of preeclampsia. Gynecol Obstet Investig 77:111–116

    Article  CAS  Google Scholar 

  8. Knight KM, Pressman EK, Hackney DN, Thornburg LL (2012) Perinatal outcomes in type 2 diabetic patients compared with non-diabetic patients matched by body mass index. J Matern Neonatal Med 25:611–615

    Article  Google Scholar 

  9. Persson M, Cnattingius S, Wikström AK, Johansson S (2016) Maternal overweight and obesity and risk of pre-eclampsia in women with type 1 diabetes or type 2 diabetes. Diabetologia. 59:2099–2105

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bantug GR, Galluzzi L, Kroemer G, Hess C (2018) The spectrum of T cell metabolism in health and disease. Nat Rev Immunol 18:19–34

    Article  CAS  PubMed  Google Scholar 

  11. Newton R, Priyadharshini B, Turka LA (2016) Immunometabolism of regulatory T cells. Nat Immunol 17:618–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Russell DG, Huang L, VanderVen BC (2019) Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol 19:291–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Niekerk G, Engelbrecht AM (2018) Inflammation-induced metabolic derangements or adaptation: an immunometabolic perspective. Cytokine Growth Factor Rev 43:47–53

    Article  PubMed  CAS  Google Scholar 

  14. van Niekerk G, Christowitz C, Conradie D, Engelbrecht A (2019) Insulin as an immunomodulatory hormone. Cytokine Growth Factor Rev 52:34–44. https://doi.org/10.1016/j.cytogfr.2019.11.006

  15. Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW Jr, Wallace K, LaMarca B (2016) The role of inflammation in the pathology of preeclampsia. Clin Sci 130:409–419

    Article  CAS  Google Scholar 

  16. Hsu P, Nanan RKH (2014) Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia. Front Immunol 5:125

  17. Laresgoiti-Servitje E (2013) A leading role for the immune system in the pathophysiology of preeclampsia. J Leukoc Biol 94:247–257

    Article  CAS  PubMed  Google Scholar 

  18. Nourollahpour Shiadeh M, Behboodi Moghadam Z, Adam I, Saber V, Bagheri M, Rostami A (2017) Human infectious diseases and risk of preeclampsia: an updated review of the literature. Infection 45:589–600

    Article  PubMed  Google Scholar 

  19. Egan AM, Vellinga A, Harreiter J et al (2017) Epidemiology of gestational diabetes mellitus according to IADPSG/WHO 2013 criteria among obese pregnant women in Europe. Diabetologia. 60:1913–1921

    Article  PubMed  PubMed Central  Google Scholar 

  20. Frühbeck G, Catalán V, Rodríguez A, Gómez-Ambrosi J (2018) Adiponectin-leptin ratio: a promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 7:57–62

  21. La Cava A (2017) Leptin in inflammation and autoimmunity. Cytokine 98:51–58

  22. Naylor C, Petri WA (2016) Leptin regulation of immune responses. Trends Mol Med 22:88–98

    Article  CAS  PubMed  Google Scholar 

  23. Procaccini C, De Rosa V, Galgani M et al (2010) An oscillatory switch in mTOR kinase activity sets regulatory t cell responsiveness. Immunity. 33:929–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eghbal-Fard S, Yousefi M, Heydarlou H, Ahmadi M, Taghavi S, Movasaghpour A, Jadidi-Niaragh F, Yousefi B, Dolati S, Hojjat-Farsangi M, Rikhtegar R, Nouri M, Aghebati-Maleki L (2019) The imbalance of Th17/Treg axis involved in the pathogenesis of preeclampsia. J Cell Physiol 234:5106–5116

    Article  CAS  PubMed  Google Scholar 

  25. Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, Kolarz B, Rolinski J, Leszczynska-Gorzelak B, Oleszczuk J (2012) The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J Reprod Immunol 93:75–81

    Article  CAS  PubMed  Google Scholar 

  26. Asghar A, Sheikh N (2017) Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol 315:18–26

    Article  CAS  PubMed  Google Scholar 

  27. Wu D, Wong CK, Han JM, Orban PC, Huang Q, Gillies J, Mojibian M, Gibson WT, Levings MK (2020) T reg–specific insulin receptor deletion prevents diet-induced and age-associated metabolic syndrome. J Exp Med. https://doi.org/10.1084/jem.20191542

  28. Simpson S, Smith L, Bowe J (2018) Placental peptides regulating islet adaptation to pregnancy: clinical potential in gestational diabetes mellitus. Curr Opin Pharmacol 43:59–65

    Article  CAS  PubMed  Google Scholar 

  29. Pham MN, Hawa MI, Pfleger C et al (2011) Pro- and anti-inflammatory cytokines in latent autoimmune diabetes in adults, type 1 and type 2 diabetes patients: action LADA 4. Diabetologia. 54:1630–1638

    Article  CAS  PubMed  Google Scholar 

  30. Snell-Bergeon JK, West NA, Mayer-Davis EJ, Liese AD, Marcovina SM, D'Agostino RB Jr, Hamman RF, Dabelea D (2010) Inflammatory markers are increased in youth with type 1 diabetes: the SEARCH case-control study. J Clin Endocrinol Metab 95:2868–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramasamy R, Yan SF, Schmidt AM (2011) Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 1243:88–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen W, Zhang Y, Yue C, Ye Y, Chen P, Peng W, Wang Y (2017) Accumulation of advanced glycation end products involved in inflammation and contributing to severe preeclampsia, in maternal blood, umbilical blood and placental tissues. Gynecol Obstet Investig 82:388–397

    Article  CAS  Google Scholar 

  33. Huang SCC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, O'Neill CM, Yan C, du H, Abumrad NA, Urban JF Jr, Artyomov MN, Pearce EL, Pearce EJ (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15:846–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han JM, Patterson SJ, Speck M, Ehses JA, Levings MK (2014) Insulin inhibits IL-10–mediated regulatory T cell function: implications for obesity. J Immunol 192:623–629

    Article  CAS  PubMed  Google Scholar 

  35. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O'Connor E, Shokat KM, Fisher AG, Merkenschlager M (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105:7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsai S, Clemente-Casares X, Zhou AC et al (2018) Insulin receptor-mediated stimulation boosts T cell immunity during inflammation and infection. Cell Metab 28:922–934.e4

    Article  CAS  PubMed  Google Scholar 

  37. Alqudah A, McKinley MC, McNally R et al (2018) Risk of pre-eclampsia in women taking metformin: a systematic review and meta-analysis. Diabet Med 35:160–172

    Article  CAS  PubMed  Google Scholar 

  38. Romero R, Erez O, Hüttemann M, Maymon E, Panaitescu B, Conde-Agudelo A, Pacora P, Yoon BH, Grossman LI (2017) Metformin, the aspirin of the 21st century: its role in gestational diabetes mellitus, prevention of preeclampsia and cancer, and the promotion of longevity. Am J Obstet Gynecol 217:282–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang M, Ding Y, Wang Y et al (2017) Metformin regulates of Th17/treg cell balance and reduces hyperplastic synovium via activating AMPK and inhibiting mTOR in a collagen-induced arthritis rat model. Int J Clin Exp Med 10:11479–11487

  40. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 + T cell subsets. J Immunol 186:3299–3303

    Article  CAS  PubMed  Google Scholar 

  41. Nagai S, Kurebayashi Y, Koyasu S (2013) Role of PI3K/Akt and mTOR complexes in Th17 cell differentiation. Ann N Y Acad Sci 1280:30–34

    Article  CAS  PubMed  Google Scholar 

  42. Mungamuri SK, Yang X, Thor AD, Somasundaram K (2006) Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 66:4715–4724 66/9/4715

    Article  CAS  PubMed  Google Scholar 

  43. Jensen F, Wallukat G, Herse F, Budner O, el-Mousleh T, Costa SD, Dechend R, Zenclussen AC (2012) CD19 +CD5 + cells as indicators of preeclampsia. Hypertension. 59:861–868

    Article  CAS  PubMed  Google Scholar 

  44. Nandagopal N, Ali AK, Komal AK, Lee SH (2014) The critical role of IL-15-PI3K-mTOR pathway in natural killer cell effector functions. Front Immunol. https://doi.org/10.3389/fimmu.2014.00187

  45. Fukui A, Yokota M, Funamizu A, Nakamua R, Fukuhara R, Yamada K, Kimura H, Fukuyama A, Kamoi M, Tanaka K, Mizunuma H (2012) Changes of NK cells in preeclampsia. Am J Reprod Immunol 67:278–286

    Article  CAS  PubMed  Google Scholar 

  46. Taylor EB, Sasser JM (2017) Natural killer cells and T lymphocytes in pregnancy and pre-eclampsia. Clin Sci 131:2911–2917

    Article  CAS  Google Scholar 

  47. Shin J, Wang S, Deng W, Wu J, Gao J, Zhong XP (2014) Mechanistic target of rapamycin complex 1 is critical for invariant natural killer T-cell development and effector function. Proc Natl Acad Sci U S A 111:E776–E783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zegeye MM, Lindkvist M, Fälker K et al (2018) Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal 16:1–10. https://doi.org/10.1186/s12964-018-0268-4

  49. Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8:1069–1086

    Article  PubMed  Google Scholar 

  50. Wykes MN, Lewin SR (2018) Immune checkpoint blockade in infectious diseases. Nat Rev Immunol 18:91–104

    Article  CAS  PubMed  Google Scholar 

  51. Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378:158–168

    Article  CAS  PubMed  Google Scholar 

  52. Miko E, Meggyes M, Doba K et al (2019) Immune checkpoint molecules in reproductive immunology. Front Immunol 10:846

  53. Okkenhaug K, Vanhaesebroeck B (2003) PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3:317–330

    Article  CAS  PubMed  Google Scholar 

  54. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hui E, Cheung J, Zhu J et al (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science (80- ). https://doi.org/10.1126/science.aaf1292

  56. Meggyes M, Miko E, Lajko A, Csiszar B, Sandor B, Matrai P, Tamas P, Szereday L (2019) Involvement of the PD-1/PD-L1 co-inhibitory pathway in the pathogenesis of the inflammatory stage of early-onset preeclampsia. Int J Mol Sci. https://doi.org/10.3390/ijms20030583

  57. Rowshanravan B, Halliday N, Sansom DM (2018) CTLA-4: a moving target in immunotherapy. Blood 131:58–67

    Article  CAS  PubMed  Google Scholar 

  58. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hancock ML, Meyer RC, Mistry M et al (2019) Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell 177:722–736.e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kesten D, Horovitz-Fried M, Brutman-Barazani T, Sampson SR (2018) Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence. Biochim Biophys Acta, Mol Cell Res 1865:551–559

    Article  CAS  Google Scholar 

  61. Desoye G, Hartmann M, Jones CJP, Wolf HJ, Kohnen G, Kosakke G, Kaufmann P (1997) Location of insulin receptors in the placenta and its progenitor tissues. Microsc Res Tech 38:63–75

    Article  CAS  PubMed  Google Scholar 

  62. Ruiz-Palacios M, Ruiz-Alcaraz AJ, Sanchez-Campillo M, Larqué E (2017) Role of insulin in placental transport of nutrients in gestational diabetes mellitus. Ann Nutr Metab 70:16–25

    Article  CAS  PubMed  Google Scholar 

  63. Ohnishi M, Tokuda M, Masaki T, Fujimura T, Tai Y, Itano T, Matsui H, Ishida T, Konishi R, Takahara J (1995) Involvement of annexin-I in glucose-induced insulin secretion in rat pancreatic islets. Endocrinology. 136:2421–2426

    Article  CAS  PubMed  Google Scholar 

  64. Hong SH, Won JH, Yoo SA, Auh CK, Park YM (2002) Effect of annexin I on insulin secretion through surface binding sites in rat pancreatic islets. FEBS Lett 532:17–20

    Article  CAS  PubMed  Google Scholar 

  65. D’Acunto CW, Gbelcova H, Festa M, Ruml T (2014) The complex understanding of annexin A1 phosphorylation. Cell Signal 26:173–178

    Article  PubMed  CAS  Google Scholar 

  66. Jeong IK, Oh SH, Chung JH, Min YK, Lee MS, Lee MK, Kim KW (2002) The stimulatory effect of IL-1β on the insulin secretion of rat pancreatic islet is not related with iNOS pathway. Exp Mol Med 34:12–17

    Article  CAS  PubMed  Google Scholar 

  67. Eizirik DL, Sandler S, Welsh N, Juntti-Berggren L, Berggren PO (1995) Interleukin-1β-induced stimulation of insulin release in mouse pancreatic islets is related to diacylglycerol production and protein kinase C activation. Mol Cell Endocrinol 111:159–165

    Article  CAS  PubMed  Google Scholar 

  68. Burke SJ, Batdorf HM, Burk DH, Martin TM, Mendoza T, Stadler K, Alami W, Karlstad MD, Robson MJ, Blakely RD, Mynatt RL, Collier JJ (2018) Pancreatic deletion of the interleukin-1 receptor disrupts whole body glucose homeostasis and promotes islet β-cell de-differentiation. Mol Metab 14:95–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kurauti MA, Costa JM, Ferreira SM et al (2017) Interleukin-6 increases the expression and activity of insulin degrading enzyme. Sci Rep. https://doi.org/10.1038/srep46750

  70. Ratter JM, van Heck JIP, Rooijackers HMM et al (2021) Insulin acutely activates metabolism of primary human monocytes and promotes a proinflammatory phenotype. J Leukoc Biol. https://doi.org/10.1002/JLB.3AB0120-019RR

  71. Ieronymaki E, Theodorakis EM, Lyroni K, Vergadi E, Lagoudaki E, al-Qahtani A, Aznaourova M, Neofotistou-Themeli E, Eliopoulos AG, Vaporidi K, Tsatsanis C (2019) Insulin resistance in macrophages alters their metabolism and promotes an M2-like phenotype. J Immunol 202:1786–1797

    Article  CAS  PubMed  Google Scholar 

  72. Madsen RR, Vanhaesebroeck B (2020) Cracking the context-specific PI3K signaling code. Sci Signal 13(613):eaay2940. https://doi.org/10.1126/scisignal.aay2940

  73. Li P, Wei J, Gao X, Wei B, Lin H, Huang R, Niu Y, Lim K, Jing K, Chu J (2017) Insulin promotes the proliferation of human umbilical cord matrix-derived mesenchymal stem cells by activating the Akt-cyclin D1 axis. Stem Cells Int 2017:1–10

    CAS  Google Scholar 

  74. Shrader CD, Bailey KM, Konat GW, Cilento EV, Reilly FD (2009) Insulin enhances proliferation and viability of human umbilical vein endothelial cells. Arch Dermatol Res 301:159–166

    Article  CAS  PubMed  Google Scholar 

  75. Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2011.00051

  76. Lisonkova S, Joseph KS (2013) Incidence of preeclampsia: risk factors and outcomes associated with early-versus late-onset disease. Am J Obstet Gynecol 209:544.e1–544.e12

    Article  Google Scholar 

  77. Kc K, Shakya S, Zhang H (2015) Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab 66(Suppl 2):14–20

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge funding support from the Cancer Association of South Africa (CANSA), the National Research Foundation (NRF), the Medical Research Council of South Africa (SAMRC) and the Claude Leon Foundation.

Author information

Authors and Affiliations

Authors

Contributions

GVN conceptualise the theme for the article, performed the literature search and drafted the manuscript. CC and AME critically revised the work, assisted with the literature search and helped develop ideas and arguments expressed in the manuscript.

Corresponding author

Correspondence to Gustav van Niekerk.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Niekerk, G., Christowitz, C. & Engelbrecht, AM. Insulin-mediated immune dysfunction in the development of preeclampsia. J Mol Med 99, 889–897 (2021). https://doi.org/10.1007/s00109-021-02068-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02068-0

Keywords

Navigation