Skip to main content

Advertisement

Log in

Mucosal immunity and tRNA, tRF, and tiRNA

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mucosal immunity has crucial roles in human diseases such as respiratory tract infection, inflammatory bowel diseases (IBD), and colorectal cancer (CRC). Recent studies suggest that the mononuclear phagocyte system, cancer cells, bacteria, and viruses induce the mucosal immune reaction by various pathways, and can be major factors in the pathogenesis of these diseases. Transfer RNA (tRNA) and its fragments, including tRNA-derived RNA fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs), have emerged as a hot topic in recent years. They not only are verified as essential for transcription and translation but also play roles in cellular homeostasis and functions, such as cell metastasis, proliferation, and apoptosis. However, the specific relationship between their biological regulation and mucosal immunity remains unclear to date. In the present review, we carry out a comprehensive discussion on the specific roles of tRNA, tRFs, and tiRNAs relevant to mucosal immunity and related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bamias G, Arseneau KO, Cominelli F (2017) Mouse models of inflammatory bowel disease for investigating mucosal immunity in the intestine. Curr Opin Gastroenterol 33:411–416

    CAS  PubMed  Google Scholar 

  2. Silva FA, Rodrigues BL, Ayrizono ML, Leal RF (2016) The immunological basis of inflammatory bowel disease. Gastroenterol Res Pract 2016:2097274

    PubMed  PubMed Central  Google Scholar 

  3. Hanauer SB (2006) Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 12(Suppl 1):S3–S9

    PubMed  Google Scholar 

  4. Cho J, Kim S, Yang DH, Lee J, Park KW, Go J, Hyun CL, Jee Y, Kang KS (2018) Mucosal immunity related to FOXP3(+) regulatory T cells, Th17 cells and cytokines in pediatric inflammatory bowel disease. J Korean Med Sci 33:e336

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang J, Lim SY, Ko YS, Lee HY, Oh SW, Kim MG, Cho WY, Jo SK (2019) Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease. Nephrol Dial Transplant 34:419–428

    CAS  PubMed  Google Scholar 

  6. Heron SE, Elahi S (2017) HIV infection and compromised mucosal immunity: Oral manifestations and systemic inflammation. Front Immunol 8:241

    PubMed  PubMed Central  Google Scholar 

  7. Solans L, Locht C (2018) The role of mucosal immunity in pertussis. Front Immunol 9:3068

    CAS  PubMed  Google Scholar 

  8. Tokuhara D, Kurashima Y, Kamioka M, Nakayama T, Ernst P, Kiyono H (2019) A comprehensive understanding of the gut mucosal immune system in allergic inflammation. Allergology International 68:17–25

    CAS  PubMed  Google Scholar 

  9. Santaolalla R, Fukata M, Abreu MT (2011) Innate immunity in the small intestine. Curr Opin Gastroenterol 27:125–131

    PubMed  PubMed Central  Google Scholar 

  10. Leone K, Poggiana C, Zamarchi R (2018) The interplay between circulating tumor cells and the immune system: from immune escape to cancer immunotherapy. Diagnostics (Basel, Switzerland) 8:59

    CAS  Google Scholar 

  11. Schimmel P (2018) The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat Rev Mol Cell Biol 19:45–58

    CAS  PubMed  Google Scholar 

  12. Raina M, Ibba M (2014) tRNAs as regulators of biological processes. Front Genet 5:171

    PubMed  PubMed Central  Google Scholar 

  13. Zhu L, Ge J, Li T, Shen Y, Guo J (2019) tRNA-derived fragments and tRNA halves: the new players in cancers. Cancer Lett 452:31–37

    CAS  PubMed  Google Scholar 

  14. Li S, Xu Z, Sheng J (2018) tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes 9:246

    PubMed Central  Google Scholar 

  15. Li S, Hu GF (2012) Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 227:2822–2826

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson DM, Parker R (2009) The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185:43–50

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamasaki S, Ivanov P, Hu GF, Anderson P (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185:35–42

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Cai F, Liu J, Chang H, Liu L, Yang A, Liu X (2018) Transfer RNA-derived fragments as potential exosome tRNA-derived fragment biomarkers for osteoporosis. Int J Rheum Dis 21:1659–1669

    CAS  PubMed  Google Scholar 

  19. Wang Q, Lee I, Ren J, Ajay SS, Lee YS, Bao X (2013) Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther 21:368–379

    CAS  PubMed  Google Scholar 

  20. Shao Y, Sun Q, Liu X, Wang P, Wu R, Ma Z (2017) tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer. Chem Biol Drug Des 90:730–738

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Guzzi N, Ciesla M, Ngoc PCT et al (2018) Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173:1204–1216.e1226

    CAS  PubMed  Google Scholar 

  22. Selitsky SR, Baran-Gale J, Honda M, Yamane D, Masaki T, Fannin EE, Guerra B, Shirasaki T, Shimakami T, Kaneko S, Lanford RE, Lemon SM, Sethupathy P (2015) Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C. Sci Rep 5:7675

    PubMed  PubMed Central  Google Scholar 

  23. Kim HK, Fuchs G, Wang S, Wei W, Zhang Y, Park H, Roy-Chaudhuri B, Li P, Xu J, Chu K, Zhang F, Chua MS, So S, Zhang QC, Sarnow P, Kay MA (2017) A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 552:57–62

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Honda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, Imoto I, Rigoutsos I, Kirino Y (2015) Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci U S A 112:E3816–E3825

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li S, Shi X, Chen M, Xu N, Sun D, Bai R, Chen H, Ding K, Sheng J, Xu Z (2019) Angiogenin promotes colorectal cancer metastasis via tiRNA production. Int J Cancer 145:1395–1407

    CAS  PubMed  Google Scholar 

  26. Zhu L, Li T, Shen Y, Yu X, Xiao B, Guo J (2019) Using tRNA halves as novel biomarkers for the diagnosis of gastric cancer. Cancer Biomark 25:169–176

    PubMed  Google Scholar 

  27. Zhang M, Li F, Wang J, He W, Li Y, Li H, Wei Z, Cao Y (2019) tRNA-derived fragment tRF-03357 promotes cell proliferation, migration and invasion in high-grade serous ovarian cancer. Onco Targets Ther 12:6371–6383

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Karousi P, Katsaraki K, Papageorgiou SG, Pappa V, Scorilas A, Kontos CK (2019) Identification of a novel tRNA-derived RNA fragment exhibiting high prognostic potential in chronic lymphocytic leukemia. Hematol Oncol 37:498–504

    PubMed  Google Scholar 

  29. Katsaraki K, Artemaki PI, Papageorgiou SG, Pappa V, Scorilas A, Kontos CK (2019) Identification of a novel, internal tRNA-derived RNA fragment as a new prognostic and screening biomarker in chronic lymphocytic leukemia, using an innovative quantitative real-time PCR assay. Leuk Res 87:106234

    CAS  PubMed  Google Scholar 

  30. Karousi P, Adamopoulos PG, Papageorgiou SG, Pappa V, Scorilas A, Kontos CK (2020) A novel, mitochondrial, internal tRNA-derived RNA fragment possesses clinical utility as a molecular prognostic biomarker in chronic lymphocytic leukemia. Clin Biochem 85:20–26

    CAS  PubMed  Google Scholar 

  31. Shen Y, Yu X, Zhu L, Li T, Yan Z, Guo J (2018) Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases. J Mol Med (Berlin, Germany) 96:1167–1176

    Google Scholar 

  32. Mayo CB, Wong CJ, Lopez PE, Lary JW, Cole JL et al (2016) RNA (New York, NY) 22:1065–1075

    CAS  Google Scholar 

  33. Husain B, Hesler S, Cole JL (2015) Regulation of PKR by RNA: formation of active and inactive dimers. Biochemistry 54:6663–6672

    CAS  PubMed  Google Scholar 

  34. Nallagatla SR, Jones CN, Ghosh SK et al (2013) Native tertiary structure and nucleoside modifications suppress tRNA's intrinsic ability to activate the innate immune sensor PKR. PLoS One 8:e57905

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hull CM, Bevilacqua PC (2016) Discriminating self and non-self by RNA: roles for RNA structure, misfolding, and modification in regulating the innate immune sensor PKR. Acc Chem Res 49:1242–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sadler AJ, Williams BR (2007) Structure and function of the protein kinase R. Curr Top Microbiol Immunol 316:253–292

    CAS  PubMed  Google Scholar 

  37. Gilbert SJ, Duance VC, Mason DJ (2004) Does protein kinase R mediate TNF-alpha- and ceramide-induced increases in expression and activation of matrix metalloproteinases in articular cartilage by a novel mechanism? Arthritis Res Ther 6:R46–r55

    CAS  PubMed  Google Scholar 

  38. Ma CH, Wu CH, Jou IM, Tu YK, Hung CH, Hsieh PL, Tsai KL (2018) PKR activation causes inflammation and MMP-13 secretion in human degenerated articular chondrocytes. Redox Biol 14:72–81

    CAS  PubMed  Google Scholar 

  39. Shinohara H, Teramachi J, Okamura H, Yang D, Nagata T, Haneji T (2015) Double stranded RNA-dependent protein kinase is necessary for TNF-alpha-induced osteoclast formation in vitro and in vivo. J Cell Biochem 116:1957–1967

    CAS  PubMed  Google Scholar 

  40. Namer LS, Osman F, Banai Y, Masquida B, Jung R, Kaempfer R (2017) An ancient pseudoknot in TNF-alpha pre-mRNA activates PKR, inducing eIF2alpha phosphorylation that potently enhances splicing. Cell Rep 20:188–200

    CAS  PubMed  Google Scholar 

  41. Zhao X, Zhu D, Ye J, Li X, Wang Z, Zhang L, Xu W (2015) The potential protective role of the combination of IL-22 and TNF-alpha against genital tract Chlamydia trachomatis infection. Cytokine 73:66–73

    CAS  PubMed  Google Scholar 

  42. McAllister CS, Taghavi N, Samuel CE (2012) Protein kinase PKR amplification of interferon β induction occurs through initiation factor eIF-2α-mediated translational control. J Biol Chem 287:36384–36392

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Frias AH, Jones RM, Fifadara NH, Vijay-Kumar M, Gewirtz AT (2012) Rotavirus-induced IFN-beta promotes anti-viral signaling and apoptosis that modulate viral replication in intestinal epithelial cells. Innate Immun 18:294–306

    CAS  PubMed  Google Scholar 

  44. Cao SS, Song B, Kaufman RJ (2012) PKR protects colonic epithelium against colitis through the unfolded protein response and prosurvival signaling. Inflamm Bowel Dis 18:1735–1742

    PubMed  Google Scholar 

  45. Curi R, de Siqueira MR, de Campos Crispin LA, Norata GD, Sampaio SC, Newsholme P (2017) A past and present overview of macrophage metabolism and functional outcomes. Clinical Science (London, England : 1979) 131:1329–1342

    CAS  Google Scholar 

  46. Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature 421:290–294

    CAS  PubMed  Google Scholar 

  47. Graczyk D, White RJ, Ryan KM (2015) Involvement of RNA polymerase III in immune responses. Mol Cell Biol 35:1848–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lemme-Dumit JM, Polti MA, Perdigon G, Galdeano CM (2018) Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality. Benefic Microbes 9:153–164

    CAS  Google Scholar 

  49. Verschoor CP, Puchta A, Bowdish DM (2012) The macrophage. Methods in Molecular Biology (Clifton, N.J.) 844:139–156

    CAS  Google Scholar 

  50. Andrews C, McLean MH, Durum SK (2018) Cytokine tuning of intestinal epithelial function. Front Immunol 9:1270

    PubMed  PubMed Central  Google Scholar 

  51. Rabbi MF, Eissa N, Munyaka PM, Kermarrec L, Elgazzar O, Khafipour E, Bernstein CN, Ghia JE (2017) Reactivation of intestinal inflammation is suppressed by catestatin in a murine model of colitis via M1 macrophages and not the gut microbiota. Front Immunol 8:985

    PubMed  PubMed Central  Google Scholar 

  52. Abbas W, Khan KA, Tripathy MK, Dichamp I, Keita M, Rohr O, Herbein G (2012) Inhibition of ER stress-mediated apoptosis in macrophages by nuclear-cytoplasmic relocalization of eEF1A by the HIV-1 Nef protein. Cell Death Dis 3:e292

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wiseman DH, May A, Jolles S, Connor P, Powell C, Heeney MM, Giardina PJ, Klaassen RJ, Chakraborty P, Geraghty MT, Major-Cook N, Kannengiesser C, Thuret I, Thompson AA, Marques L, Hughes S, Bonney DK, Bottomley SS, Fleming MD, Wynn RF (2013) A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood 122:112–123

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Giannelou A, Wang H, Zhou Q, Park YH, Abu-Asab MS, Ylaya K, Stone DL, Sediva A, Sleiman R, Sramkova L, Bhatla D, Serti E, Tsai WL, Yang D, Bishop K, Carrington B, Pei W, Deuitch N, Brooks S, Edwan JH, Joshi S, Prader S, Kaiser D, Owen WC, Sonbul AA, Zhang Y, Niemela JE, Burgess SM, Boehm M, Rehermann B, Chae JJ, Quezado MM, Ombrello AK, Buckley RH, Grom AA, Remmers EF, Pachlopnik JM, Su HC, Gutierrez-Cruz G, Hewitt SM, Sood R, Risma K, Calvo KR, Rosenzweig SD, Gadina M, Hafner M, Sun HW, Kastner DL, Aksentijevich I (2018) Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Ann Rheum Dis 77:612–619

    CAS  PubMed  Google Scholar 

  55. Wilusz JE, Whipple JM, Phizicky EM, Sharp PA (2011) tRNAs marked with CCACCA are targeted for degradation. Science (New York, NY) 334:817–821

    CAS  Google Scholar 

  56. Sasarman F, Thiffault I, Weraarpachai W, Salomon S, Maftei C, Gauthier J, Ellazam B, Webb N, Antonicka H, Janer A, Brunel-Guitton C, Elpeleg O, Mitchell G, Shoubridge EA (2015) The 3’ addition of CCA to mitochondrial tRNASer (AGY) is specifically impaired in patients with mutations in the tRNA nucleotidyl transferase TRNT1. Hum Mol Genet 24:2841–2847

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wedatilake Y, Niazi R, Fassone E, Powell CA, Pearce S, Plagnol V, Saldanha JW, Kleta R, Chong WK, Footitt E, Mills PB, Taanman JW, Minczuk M, Clayton PT, Rahman S (2016) TRNT1 deficiency: clinical, biochemical and molecular genetic features. Orphanet J Rare Dis 11:90

    PubMed  PubMed Central  Google Scholar 

  58. Buckley A, Turner JR (2018) Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol 10:a029314

    PubMed  PubMed Central  Google Scholar 

  59. Fu Y, Lee I, Lee YS, Bao X (2015) Small non-coding transfer RNA-derived RNA fragments (tRFs): their biogenesis, Function and Implication in Human Diseases. Genomics Inform 13:94–101

    PubMed  PubMed Central  Google Scholar 

  60. Huang B, Yang H, Cheng X et al (2017) tRF/miR-1280 suppresses stem cell-like cells and metastasis in colorectal Cancer. Cancer Res 77:3194–3206

    CAS  PubMed  Google Scholar 

  61. Cheng H, Jin C, Wu J, Zhu S, Liu YJ, Chen J (2017) Guards at the gate: physiological and pathological roles of tissue-resident innate lymphoid cells in the lung. Protein Cell 8:878–895

    PubMed  PubMed Central  Google Scholar 

  62. Bruchard M, Ghiringhelli F (2019) Deciphering the roles of innate lymphoid cells in Cancer. Front Immunol 10:656

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang Q, Cao W, Mielke LA, Seillet C, Belz GT, Jacquelot N (2019) Innate lymphoid cells in colorectal cancers: a double-edged sword. Front Immunol 10:3080

    CAS  PubMed  Google Scholar 

  64. Atreya I, Kindermann M, Wirtz S (2019) Innate lymphoid cells in intestinal cancer development. Semin Immunol 41:101267

    CAS  PubMed  Google Scholar 

  65. Fu H, Feng J, Liu Q, Sun F, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2009) Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 583:437–442

    CAS  PubMed  Google Scholar 

  66. Deng J, Ptashkin RN, Chen Y, Cheng Z, Liu G, Phan T, Deng X, Zhou J, Lee I, Lee YS, Bao X (2015) Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism. Mol Ther 23:1622–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu B, Ma CH, Brazas R, Jin H (2002) The major phosphorylation sites of the respiratory syncytial virus phosphoprotein are dispensable for virus replication in vitro. J Virol 76:10776–10784

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Allie SR, Randall TD (2017) Pulmonary immunity to viruses. Clinical Science (London, England : 1979) 131:1737–1762

    CAS  Google Scholar 

  69. Openshaw PJM, Chiu C, Culley FJ, Johansson C (2017) Protective and harmful immunity to RSV infection. Annu Rev Immunol 35:501–532

    CAS  PubMed  Google Scholar 

  70. Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA (2018) The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol 39:677–696

    CAS  PubMed  Google Scholar 

  71. Brown JJ, Short SP, Stencel-Baerenwald J, Urbanek K, Pruijssers AJ, McAllister N, Ikizler M, Taylor G, Aravamudhan P, Khomandiak S, Jabri B, Williams CS, Dermody TS (2018) Reovirus-induced apoptosis in the intestine limits establishment of enteric infection. J Virol 92:e02062

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Williams JM, Duckworth CA, Burkitt MD, Watson AJ, Campbell BJ, Pritchard DM (2015) Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip. Vet Pathol 52:445–455

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakahashi-Oda C, Udayanga KG, Nakamura Y et al (2016) Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces. Nat Immunol 17:441–450

    CAS  PubMed  Google Scholar 

  74. Saikia M, Jobava R, Parisien M, Putnam A, Krokowski D, Gao XH, Guan BJ, Yuan Y, Jankowsky E, Feng Z, Hu GF, Pusztai-Carey M, Gorla M, Sepuri NBV, Pan T, Hatzoglou M (2014) Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol 34:2450–2463

    PubMed  PubMed Central  Google Scholar 

  75. Elbarbary RA, Takaku H, Uchiumi N, Tamiya H, Abe M, Takahashi M, Nishida H, Nashimoto M (2009) Modulation of gene expression by human cytosolic tRNase Z(L) through 5’-half-tRNA. PLoS One 4:e5908

    PubMed  PubMed Central  Google Scholar 

  76. Li S, Chen Y, Sun D et al (2018) Angiogenin prevents progranulin A9D mutation-induced neuronal-like cell apoptosis through cleaving tRNAs into tiRNAs. Mol Neurobiol 55:1338–1351

    CAS  PubMed  Google Scholar 

  77. Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285:10959–10968

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lyons SM, Achorn C, Kedersha NL, Anderson PJ, Ivanov P (2016) YB-1 regulates tiRNA-induced stress granule formation but not translational repression. Nucleic Acids Res 44:6949–6960

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Anderson P, Kedersha N (2009) Stress granules. Current Biology 19:R397–R398

    CAS  PubMed  Google Scholar 

  80. Reineke LC, Kedersha N, Langereis MA, van Kuppeveld FJ, Lloyd RE (2015) Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1. mBio 6:e02486

    PubMed  PubMed Central  Google Scholar 

  81. Reineke LC, Dougherty JD, Pierre P, Lloyd RE (2012) Large G3BP-induced granules trigger eIF2alpha phosphorylation. Mol Biol Cell 23:3499–3510

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Burgess HM, Mohr I (2018) Defining the role of stress granules in innate immune suppression by the herpes simplex virus 1 endoribonuclease VHS. J Virol 92:e00829

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li ZY, Chen ZL, Zhang T, Wei C, Shi WY (2016) TGF-beta and NF-kappaB signaling pathway crosstalk potentiates corneal epithelial senescence through an RNA stress response. Aging 8:2337–2354

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Atreya I, Atreya R, Neurath MF (2008) NF-kappaB in inflammatory bowel disease. J Intern Med 263:591–596

    CAS  PubMed  Google Scholar 

  85. Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM (2004) TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 286:G367–G376

    CAS  PubMed  Google Scholar 

  86. Baltzis D, Qu LK, Papadopoulou S, Blais JD, Bell JC, Sonenberg N, Koromilas AE (2004) Resistance to vesicular stomatitis virus infection requires a functional cross talk between the eukaryotic translation initiation factor 2alpha kinases PERK and PKR. J Virol 78:12747–12761

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Balachandran S, Barber GN (2007) PKR in innate immunity, cancer, and viral oncolysis. Methods Mol Biol (Clifton, NJ) 383:277–301

    CAS  Google Scholar 

  88. Kollias G, Douni E, Kassiotis G, Kontoyiannis D (1999) On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol Rev 169:175–194

    CAS  PubMed  Google Scholar 

  89. Kollias G, Douni E, Kassiotis G, Kontoyiannis D (1999) The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann Rheum Dis 58(Suppl 1):I32–I39

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kollias G (2005) TNF pathophysiology in murine models of chronic inflammation and autoimmunity. Semin Arthritis Rheum 34:3–6

    CAS  PubMed  Google Scholar 

  91. Zhang L, Xiang W, Wang G et al (2016) Interferon beta (IFN-beta) production during the double-stranded RNA (dsRNA) response in hepatocytes involves coordinated and feedforward signaling through toll-like receptor 3 (TLR3), RNA-dependent protein kinase (PKR), inducible nitric oxide synthase (iNOS), and Src protein. J Biol Chem 291:15093–15107

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wolferstätter M, Schweneker M, Späth M et al (2014) Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses. J Virol 88:14396–14411

    PubMed  PubMed Central  Google Scholar 

  93. Cohen-Chalamish S, Hasson A, Weinberg D, Namer LS, Banai Y, Osman F, Kaempfer R (2009) Dynamic refolding of IFN-gamma mRNA enables it to function as PKR activator and translation template. Nat Chem Biol 5:896–903

    CAS  PubMed  Google Scholar 

  94. Becker C, Wirtz S, Blessing M, Pirhonen J, Strand D, Bechthold O, Frick J, Galle PR, Autenrieth I, Neurath MF (2003) Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest 112:693–706

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    CAS  PubMed  Google Scholar 

  96. Nallagatla SR, Bevilacqua PC (2008) Nucleoside modifications modulate activation of the protein kinase PKR in an RNA structure-specific manner. RNA (New York, NY) 14:1201–1213

    CAS  Google Scholar 

  97. Chen Q, Yan M, Cao Z et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science (New York, NY) 351:397–400

    CAS  Google Scholar 

  98. Sharma U, Conine CC, Shea JM et al (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science (New York, NY) 351:391–396

    CAS  Google Scholar 

  99. Shen L, Tan Z, Gan M, Li Q, Chen L, Niu L, Jiang D, Zhao Y, Wang J, Li X, Zhang S, Zhu L (2019) tRNA-derived small non-coding RNAs as novel epigenetic molecules regulating Adipogenesis. Biomolecules 9:274

    CAS  PubMed Central  Google Scholar 

Download references

Funding

This study is supported by grants from the National Natural Science Foundation of China (No. 81770545) and MDT Project of Clinical Research Innovation Foundation, Renji Hospital, School of Medicine, Shanghai Jiaotong University (PYI-17-003).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by Yueying Chen. The first draft of the manuscript was written by Yueying Chen and Jun Shen, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jun Shen.

Ethics declarations

Ethics declarations

None.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Shen, J. Mucosal immunity and tRNA, tRF, and tiRNA. J Mol Med 99, 47–56 (2021). https://doi.org/10.1007/s00109-020-02008-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-02008-4

Keywords

Navigation