Skip to main content
Log in

SUMOylation of Pdia3 exacerbates proinsulin misfolding and ER stress in pancreatic beta cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

SUMOylation has long been recognized to regulate multiple biological processes in pancreatic beta cells, but its impact on proinsulin disulfide maturation and endoplasmic reticulum (ER) stress remains elusive. Herein, we conducted comparative proteomic analyses of SUMOylated proteins in primary mouse/human islets following proinflammatory cytokine stimulation. Cytokine challenge rendered beta cells to undergo a SUMOylation turnover manifested by the changes of SUMOylation substrates and SUMOylation levels for multiple substrates. Our data support that SUMOylation may play a crucial role to regulate proinsulin misfolding and ER stress at least by targeting Protein Disulfide Isomerase a3 (Pdia3). SUMOylation regulates Pdia3 enzymatic activity, subcellular localization, and protein binding ability. Furthermore, SUMOylation of Pdia3 exacerbated proinsulin misfolding and ER stress, and repressed Stat3 activation. In contrast, disruption of Pdia3 SUMOylation markedly rescued the outcomes. Collectively, our study expands the understanding how SUMOylation regulates ER stress in beta cells, which shed light on developing potential strategies against beta cell dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusion in the paper are present in the paper and/or the electronic supplementary material. Additional data related to this paper may be requested from the authors.

Abbreviations

C:

cysteine

Co-IP:

co-immunoprecipitation

CRP:

C-reactive protein

DTT:

dithiothreitol

ECAR:

extracellular acidification rate

GSIS:

glucose-stimulated insulin secretion

K:

lysine

MU:

mutant

OCR:

oxygen consumption rate

PDI:

protein disulfide isomerase

PTM:

post-translational modification

R:

arginine

RLU:

relative luciferase

SUMO:

small ubiquitin like modifier

Thap:

thapsigargin

UBC9:

SUMO-conjugating enzyme 2

References

  1. Zhao J (2007) Sumoylation regulates diverse biological processes. Cell Mol Life Sci 64:3017–3033

    Article  CAS  Google Scholar 

  2. Shao C, Cobb MH (2009) Sumoylation regulates the transcriptional activity of MafA in pancreatic beta cells. J Biol Chem 284:3117–3124

    Article  CAS  Google Scholar 

  3. Dai XQ, Kolic J, Marchi P, Sipione S, Macdonald PE (2009) SUMOylation regulates Kv2.1 and modulates pancreatic beta-cell excitability. J Cell Sci 122:775–779

    Article  CAS  Google Scholar 

  4. He X, Lai Q, Chen C, Li N, Sun F, Huang W, Zhang S, Yu Q, Yang P, Xiong F, Chen Z, Gong Q, Ren B, Weng J, Eizirik DL, Zhou Z, Wang CY (2018) Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function. Diabetologia 61:881–895

    Article  CAS  Google Scholar 

  5. Dai XQ, Plummer G, Casimir M, Kang Y, Hajmrle C, Gaisano HY, Manning Fox JE, MacDonald PE (2011) SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans. Diabetes 60:838–847

    Article  CAS  Google Scholar 

  6. Rajpal G, Schuiki I, Liu M, Volchuk A, Arvan P (2012) Action of protein disulfide isomerase on proinsulin exit from endoplasmic reticulum of pancreatic beta-cells. J Biol Chem 287:43–47

    Article  CAS  Google Scholar 

  7. Hodish I, Liu M, Rajpal G, Larkin D, Holz RW, Adams A, Liu L, Arvan P (2010) Misfolded proinsulin affects bystander proinsulin in neonatal diabetes. J Biol Chem 285:685–694

    Article  CAS  Google Scholar 

  8. He K, Cunningham CN, Manickam N, Liu M, Arvan P, Tsai B (2015) PDI reductase acts on Akita mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L-p97 axis. Mol Biol Cell 26:3413–3423

    Article  CAS  Google Scholar 

  9. Cunningham CN, He K, Arunagiri A, Paton AW, Paton JC, Arvan P, Tsai B (2017) Chaperone-driven degradation of a misfolded proinsulin mutant in parallel with restoration of wild-type insulin secretion. Diabetes 66:741–753

    Article  CAS  Google Scholar 

  10. Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, Evans-Molina C, Rickus JL, Maier B, Mirmira RG (2012) Islet beta-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61:818–827

    Article  CAS  Google Scholar 

  11. Turano C, Coppari S, Altieri F, Ferraro A (2002) Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 193:154–163

    Article  CAS  Google Scholar 

  12. Ruddock LW (2006) Gaining access to ERp57 function. Structure 14:1209–1210

    Article  CAS  Google Scholar 

  13. Kozlov G, Maattanen P, Schrag JD, Pollock S, Cygler M, Nagar B, Thomas DY, Gehring K (2006) Crystal structure of the bb’ domains of the protein disulfide isomerase ERp57. Structure 14:1331–1339

    Article  CAS  Google Scholar 

  14. Dong G, Wearsch PA, Peaper DR, Cresswell P, Reinisch KM (2009) Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity 30:21–32

    Article  Google Scholar 

  15. Kang SJ, Cresswell P (2002) Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J Biol Chem 277:44838–44844

    Article  CAS  Google Scholar 

  16. Qi M, Barbaro B, Wang S, Wang Y, Hansen M, Oberholzer J (2009) Human pancreatic islet isolation: part I: digestion and collection of pancreatic tissue. J Vis Exp.

  17. Wang F, Sun F, Luo J, Yue T, Chen L, Zhou H, Zhang J, Yang C, Luo X, Zhou Q, Zhu H, Li J, Yang P, Xiong F, Yu Q, Zhang H, Zhang W, Xu A, Zhou Z, Lu Q, Eizirik DL, Zhang S, Wang CY (2019) Loss of ubiquitin-conjugating enzyme E2 (Ubc9) in macrophages exacerbates multiple low-dose streptozotocin-induced diabetes by attenuating M2 macrophage polarization. Cell Death Dis 10:892

    Article  CAS  Google Scholar 

  18. Cheng J, Song J, He X, Zhang M, Hu S, Zhang S, Yu Q, Yang P, Xiong F, Wang DW, Zhou J, Ning Q, Chen Z, Eizirik DL, Zhou Z, Zhao C, Wang CY (2016) Loss of Mbd2 protects mice against high-fat diet-induced obesity and insulin resistance by regulating the homeostasis of energy storage and expenditure. Diabetes 65:3384–3395

    Article  CAS  Google Scholar 

  19. Rutter GA, Hodson DJ, Chabosseau P, Haythorne E, Pullen TJ, Leclerc I (2017) Local and regional control of calcium dynamics in the pancreatic islet. Diabetes Obes Metab 19(Suppl 1):30–41

    Article  CAS  Google Scholar 

  20. Arunagiri A, Haataja L, Cunningham CN, Shrestha N, Tsai B, Qi L, Liu M, Arvan P (2018) Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Ann N Y Acad Sci 1418:5–19

    Article  CAS  Google Scholar 

  21. Ramirez-Rangel I, Bracho-Valdes I, Vazquez-Macias A, Carretero-Ortega J, Reyes-Cruz G, Vazquez-Prado J (2011) Regulation of mTORC1 complex assembly and signaling by GRp58/ERp57. Mol Cell Biol 31:1657–1671

    Article  CAS  Google Scholar 

  22. Coe H, Jung J, Groenendyk J, Prins D, Michalak M (2010) ERp57 modulates STAT3 signaling from the lumen of the endoplasmic reticulum. J Biol Chem 285:6725–6738

    Article  CAS  Google Scholar 

  23. Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R (1998) Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 18:2545–2552

    Article  CAS  Google Scholar 

  24. Bachar-Wikstrom E, Wikstrom JD, Ariav Y, Tirosh B, Kaiser N, Cerasi E, Leibowitz G (2013) Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 62:1227–1237

    Article  CAS  Google Scholar 

  25. Haissaguerre M, Saucisse N, Cota D (2014) Influence of mTOR in energy and metabolic homeostasis. Mol Cell Endocrinol 397:67–77

    Article  CAS  Google Scholar 

  26. Manning Fox JE, Hajmrle C, Macdonald PE (2012) Novel roles of SUMO in pancreatic beta-cells: thinking outside the nucleus. Can J Physiol Pharmacol 90:765–770

    Article  CAS  Google Scholar 

  27. Vergari E, Plummer G, Dai X, MacDonald PE (2012) DeSUMOylation controls insulin exocytosis in response to metabolic signals. Biomolecules 2:269–281

    Article  CAS  Google Scholar 

  28. Donath MY, Dinarello CA, Mandrup-Poulsen T (2019) Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol 19:734–746

    Article  CAS  Google Scholar 

  29. Spoden GA, Morandell D, Ehehalt D, Fiedler M, Jansen-Durr P, Hermann M, Zwerschke W (2009) The SUMO-E3 ligase PIAS3 targets pyruvate kinase M2. J Cell Biochem 107:293–302

    Article  CAS  Google Scholar 

  30. Ritterhoff T, Das H, Hofhaus G, Schroder RR, Flotho A, Melchior F (2016) The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nat Commun 7:11482

    Article  CAS  Google Scholar 

  31. Jang I, Pottekat A, Poothong J, Yong J, Lagunas-Acosta J, Charbono A, Chen Z, Scheuner DL, Liu M, Itkin-Ansari P, Arvan P, Kaufman RJ (2019) PDIA1/P4HB is required for efficient proinsulin maturation and ss cell health in response to diet induced obesity. Elife 8:e44528

    Article  CAS  Google Scholar 

  32. Yang P, Li M, Guo D, Gong F, Adam BL, Atkinson MA, Wang CY (2008) Comparative analysis of the islet proteome between NOD/Lt and ALR/Lt mice. Ann N Y Acad Sci 1150:68–71

    Article  CAS  Google Scholar 

  33. Gorasia DG, Dudek NL, Safavi-Hemami H, Perez RA, Schittenhelm RB, Saunders PM, Wee S, Mangum JE, Hubbard MJ, Purcell AW (2016) A prominent role of PDIA6 in processing of misfolded proinsulin. Biochim Biophys Acta 1864:715–723

    Article  CAS  Google Scholar 

  34. Woehlbier U, Colombo A, Saaranen MJ, Perez V, Ojeda J, Bustos FJ, Andreu CI, Torres M, Valenzuela V, Medinas DB et al (2016) ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J 35:845–865

    Article  CAS  Google Scholar 

  35. Wang H, Chan PK, Pan SY, Kwon KH, Ye Y, Chu JH, Fong WF, Tsui WM, Yu ZL (2010) ERp57 is up-regulated in free fatty acids-induced steatotic L-02 cells and human nonalcoholic fatty livers. J Cell Biochem 110:1447–1456

    Article  CAS  Google Scholar 

  36. Hoffman SM, Tully JE, Nolin JD, Lahue KG, Goldman DH, Daphtary N, Aliyeva M, Irvin CG, Dixon AE, Poynter ME, Anathy V (2013) Endoplasmic reticulum stress mediates house dust mite-induced airway epithelial apoptosis and fibrosis. Respir Res 14:141

    Article  Google Scholar 

  37. Li Y, Camacho P (2004) Ca2+−dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 164:35–46

    Article  CAS  Google Scholar 

  38. Kang S, Dahl R, Hsieh W, Shin A, Zsebo KM, Buettner C, Hajjar RJ, Lebeche D (2016) Small molecular allosteric activator of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) attenuates diabetes and metabolic disorders. J Biol Chem 291:5185–5198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Jinxiu Li (Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China) for discussing and reviewing the manuscript.

Code availability

Not applicable.

Funding

This study was supported by the Ministry of Science and Technology of China (2016YFC1305002 and 2017YFC1309603), the National Natural Science Foundation of China (81471046, 81530024, 91749207, 81920108009, 81770823 and 81670729), NHC Drug Discovery Program of China (2017ZX09304022–07), the Department of Science and Technology of Hubei Province (2017ACA096), the Integrated Innovative Team for Major Human Disease Programs of Tongji Medical College, Huazhong University of Science and Technology, and the Innovative Funding for Translational Research from Tongji Hospital.

Author information

Authors and Affiliations

Authors

Contributions

N.L. and X.L. were responsible for conducting all experiments, data analysis, and writing the manuscript. F.X., Q.Y., and P.Y. were responsible for conducting all experiments and data analysis. N.L., S.Z., and C.-Y.W. were involved in all method establishment and modification. X.W., J.J., and J.X. were responsible for collecting human pancreas. N.L. and C.-Y.W were responsible for writing the manuscript. S.Z. and Q.G. contributed to discuss and review the manuscript. N.L. and C.-Y.W. were responsible for funding acquisition. D.L E., Z.Z., J.Z., and S.Z. contributed to the review of the manuscript and manuscript preparation. C.-Y.W. is the guarantor of this work and had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding authors

Correspondence to Fei Xiong, Shu Zhang or Cong-Yi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Luo, X., Yu, Q. et al. SUMOylation of Pdia3 exacerbates proinsulin misfolding and ER stress in pancreatic beta cells. J Mol Med 98, 1795–1807 (2020). https://doi.org/10.1007/s00109-020-02006-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-02006-6

Keywords

Navigation