Skip to main content
Log in

A cell-based drug delivery platform for treating central nervous system inflammation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are promising candidates for the development of cell-based drug delivery systems for autoimmune inflammatory diseases, such as multiple sclerosis (MS). Here, we investigated the effect of Ro-31-8425, an ATP-competitive kinase inhibitor, on the therapeutic properties of MSCs. Upon a simple pretreatment procedure, MSCs spontaneously took up and then gradually released significant amounts of Ro-31-8425. Ro-31-8425 (free or released by MSCs) suppressed the proliferation of CD4+ T cells in vitro following polyclonal and antigen-specific stimulation. Systemic administration of Ro-31-8425-loaded MSCs ameliorated the clinical course of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, displaying a stronger suppressive effect on EAE than control MSCs or free Ro-31-8425. Ro-31-8425-MSC administration resulted in sustained levels of Ro-31-8425 in the serum of EAE mice, modulating immune cell trafficking and the autoimmune response during EAE. Collectively, these results identify MSC-based drug delivery as a potential therapeutic strategy for the treatment of autoimmune diseases.

Key messages

  • MSCs can spontaneously take up the ATP-competitive kinase inhibitor Ro-31-8425.

  • Ro-31-8425-loaded MSCs gradually release Ro-31-8425 and exhibit sustained suppression of T cells.

  • Ro-31-8425-loaded MSCs have more sustained serum levels of Ro-31-8425 than free Ro-31-8425.

  • Ro-31-8425-loaded MSCs are more effective than MSCs and free Ro-31-8425 for EAE therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data and materials will be shared upon request.

References

  1. Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Invest 122:1180–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  CAS  PubMed  Google Scholar 

  3. Rosti-Otajärvi E, Hämäläinen P (2013) Behavioural symptoms and impairments in multiple sclerosis: a systematic review and meta-analysis. Mult Scler J 19:31–45

    Article  Google Scholar 

  4. Ford C, Goodman AD, Johnson K, Kachuck N, Lindsey JW, Lisak R et al (2010) Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15-year analysis of the US prospective open-label study of glatiramer acetate. Mult Scler (Houndmills, Basingstoke, England) 16:342–350

    Article  CAS  Google Scholar 

  5. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, Fischer JS, Goodkin DE, Granger CV, Simon JH, Alam JJ, Bartoszak DM, Bourdette DN, Braiman J, Brownscheidle CM, Coats ME, Cohan SL, Dougherty DS, Kinkel RP, Mass MK, Munschauer FE, Priore RL, Pullicino PM, Scherokman BJ, Weinstock-Guttman B, Whitham RH, The Multiple Sclerosis Collaborative Research Group (MSCRG) (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 39:285–294

    Article  CAS  PubMed  Google Scholar 

  6. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT, DEFINE Study Investigators (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367:1098–1107

    Article  CAS  PubMed  Google Scholar 

  7. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Article  CAS  PubMed  Google Scholar 

  8. Hoogduijn MJ, Popp F, Verbeek R, Masoodi M, Nicolaou A, Baan C, Dahlke MH (2010) The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol 10:1496–1500

    Article  CAS  PubMed  Google Scholar 

  9. Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol Mech 6:457–478

    Article  CAS  Google Scholar 

  10. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 101:3722–3729

    Article  CAS  PubMed  Google Scholar 

  11. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 75:389–397

    Article  CAS  PubMed  Google Scholar 

  12. Uccelli A, Prockop DJ (2010) Why should mesenchymal stem cells (MSCs) cure autoimmune diseases? Curr Opin Immunol 22:768–774

    Article  CAS  PubMed  Google Scholar 

  13. Holloman JP, Ho CC, Hukki A, Huntley JL, Gallicano GI (2013) The development of hematopoietic and mesenchymal stem cell transplantation as an effective treatment for multiple sclerosis. Am J Stem Cells 2:95–107

    PubMed  PubMed Central  Google Scholar 

  14. Zhang J, Li Y, Lu M, Cui Y, Chen J, Noffsinger L, Elias SB, Chopp M (2006) Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J Neurosci Res 84:587–595

    Article  CAS  PubMed  Google Scholar 

  15. Uccelli A, Morando S, Bonanno S, Bonanni I, Leonardi A, Mancardi G (2011) Mesenchymal stem cells for multiple sclerosis: does neural differentiation really matter? Stem Cell Res Ther 6:69–72

    CAS  Google Scholar 

  16. Saeed S, Amir Ali S, Oger J (2014) The use of mesenchymal stem cells in the treatment of multiple sclerosis: an overview of open labels and ongoing studies. J Neurol Neurophysiol 5

  17. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori J, Kassis I et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194

    Article  PubMed  PubMed Central  Google Scholar 

  18. Levy O, Brennen WN, Han E, Rosen DM, Musabeyezu J, Safaee H, Ranganath S, Ngai J, Heinelt M, Milton Y, Wang H, Bhagchandani SH, Joshi N, Bhowmick N, Denmeade SR, Isaacs JT, Karp JM (2016) A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials. 91:140–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Viganò L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A (2014) Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 192:262–270

    Article  CAS  PubMed  Google Scholar 

  20. Levy O, Mortensen LJ, Boquet G, Tong Z, Perrault C, Benhamou B, Zhang J, Stratton T, Han E, Safaee H, Musabeyezu J, Yang Z, Multon MC, Rothblatt J, Deleuze JF, Lin CP, Karp JM (2015) A small-molecule screen for enhanced homing of systemically infused cells. Cell Rep 10:1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nixon JS, Bishop J, Bradshaw D, Davis PD, Hill CH, Elliott LH, Kumar H, Lawton G, Lewis EJ, Mulqueen M (1991) Novel, potent and selective inhibitors of protein kinase C show oral anti-inflammatory activity. Drugs Exp Clin Res 17:389–393

    CAS  PubMed  Google Scholar 

  22. Luster A, Alon R, von Andrian U (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6:1182–1190

    Article  CAS  PubMed  Google Scholar 

  23. Boschelli DH (2009) Small molecule inhibitors of PKCTheta as potential antiinflammatory therapeutics. Curr Top Med Chem 9:640–654

    Article  CAS  PubMed  Google Scholar 

  24. Chand S, Mehta N, Bahia MS, Dixit A, Silakari O (2012) Protein kinase C-theta inhibitors: a novel therapy for inflammatory disorders. Curr Pharm Des 18:4725–4746

    Article  CAS  PubMed  Google Scholar 

  25. Curnock A, Bolton C, Chiu P, Doyle E, Fraysse D, Hesse M, Jones J, Weber P, Jimenez JM (2014) Selective protein kinase Cθ (PKCθ) inhibitors for the treatment of autoimmune diseases. Biochem Soc Trans 42:1524–1528

    Article  CAS  PubMed  Google Scholar 

  26. Lieu A, Tenorio G, Kerr BJ (2013) Protein kinase C gamma (PKCγ) as a novel marker to assess the functional status of the corticospinal tract in experimental autoimmune encephalomyelitis (EAE). J Neuroimmunol 256:43–48

    Article  CAS  PubMed  Google Scholar 

  27. Jimenez J, Boyall D, Brenchley G, Collier P, Davis C, Fraysse D et al (2013) Design and optimization of selective protein kinase C θ (PKCθ) inhibitors for the treatment of autoimmune diseases. J Med Chem 56:1799–1810

    Article  CAS  PubMed  Google Scholar 

  28. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature. 453:65–71

    Article  CAS  PubMed  Google Scholar 

  29. Tsunoda I, Kuang LQ, Theil DJ, Fujinami RS (2000) Antibody association with a novel model for primary progressive multiple sclerosis: induction of relapsing-remitting and progressive forms of EAE in H2s mouse strains. Brain Pathol 10:402–418

    Article  CAS  PubMed  Google Scholar 

  30. McRae BL, Kennedy MK, Tan LJ, Dal Canto MC, Picha KS, Miller SD (1992) Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J Neuroimmunol 38:229–240

    Article  CAS  PubMed  Google Scholar 

  31. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci DO, Cerliani JP, Delacour D, Wang Y, Elyaman W, Khoury SJ, Rabinovich GA (2012) Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity. 37:249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia. 57:1192–1203

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cohen JA (2013) Mesenchymal stem cell transplantation in multiple sclerosis. J Neurol Sci 333:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hauser SL, Chan JR, Oksenberg JR (2013) Multiple sclerosis: prospects and promise. Ann Neurol 74:317–327

    Article  CAS  PubMed  Google Scholar 

  36. Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nagahama K, Ogawa A, Shirane K, Shimomura Y, Sugimoto K, Mizoguchi A (2008) Protein kinase C θ plays a fundamental role in different types of chronic colitis. Gastroenterology. 134:459–469

    Article  CAS  PubMed  Google Scholar 

  38. Zhou T, Song L, Yang P, Wang Z, Lui D, Jope RS (1999) Bisindolylmaleimide VIII facilitates Fas-mediated apoptosis and inhibits T cell-mediated autoimmune diseases. Nat Med 5:42–48

    Article  CAS  PubMed  Google Scholar 

  39. Merritt JE, Sullivan JA, Tse J, Wilkinson S, Nixon JS (1997) Different sensitivities of neutrophil responses to a selective protein kinase C inhibitor Ro 31-8425; redundancy in signal transduction. Cell Signal 9:53–57

    Article  CAS  PubMed  Google Scholar 

  40. Wilkinson SE, Parker PJ, Nixon JS (1993) Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem J 294(Pt 2):335–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pessina A, Bonomi A, Coccè V, Invernici G, Navone S, Cavicchini L, Sisto F, Ferrari M, Viganò L, Locatelli A, Ciusani E, Cappelletti G, Cartelli D, Arnaldo C, Parati E, Marfia G, Pallini R, Falchetti ML, Alessandri G (2011) Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy. PLoS One 6:e28321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He H, Ye J, Wang Y, Liu Q, Chung HS, Kwon YM, Shin MC, Lee K, Yang VC (2014) Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J Control Release 176:123–132

    Article  CAS  PubMed  Google Scholar 

  43. Dong X, Niu Y, Ding Y, Wang Y, Zhao J, Leng W, Qin L (2017) Formulation and drug loading features of nano-erythrocytes. Nanoscale Res Lett 12:202

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ankrum JA, Dastidar RG, Ong JF, Levy O, Karp JM (2014) Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids. Sci Rep 4

  45. Ranganath SH, Tong Z, Levy O, Martyn K, Karp JM, Inamdar MS (2016) Controlled inhibition of the mesenchymal stromal cell pro-inflammatory secretome via microparticle engineering. Stem Cell Rep 6:926–939

    Article  CAS  Google Scholar 

  46. Xu C, Miranda-Nieves D, Ankrum JA, Matthiesen ME, Phillips JA, Roes I, Wojtkiewicz GR, Juneja V, Kultima JR, Zhao W, Vemula PK, Lin CP, Nahrendorf M, Karp JM (2012) Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly(lactide-co-glycolide) microparticles. Nano Lett 12:4131–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quintana F (2013) The aryl hydrocarbon receptor: a molecular pathway for the environmental control of the immune response. Immunology. 138:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, Chao CC, Patel B, Yan R, Blain M, Alvarez JI, Kébir H, Anandasabapathy N, Izquierdo G, Jung S, Obholzer N, Pochet N, Clish CB, Prinz M, Prat A, Antel J, Quintana FJ (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22:586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Quintana FJ, Iglesias AH, Farez MF, Caccamo M, Burns EJ, Kassam N, Oukka M, Weiner HL (2010) Adaptive autoimmunity and Foxp3-based immunoregulation in zebrafish. PLoS One 5:e9478

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mimran A, Mor F, Carmi P, Quintana FJ, Rotter V, Cohen IR (2004) DNA vaccination with CD25 protects rats from adjuvant arthritis and induces an antiergotypic response. J Clin Invest 113:924–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Farez Mauricio F, Mascanfroni Ivan D, Méndez-Huergo Santiago P, Yeste A, Murugaiyan G, Garo Lucien P et al (2015) Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell. 162:1338–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mascanfroni ID, Takenaka MC, Yeste A, Patel B, Wu Y, Kenison JE, Siddiqui S, Basso AS, Otterbein LE, Pardoll DM, Pan F, Priel A, Clish CB, Robson SC, Quintana FJ (2015) Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-[alpha]. Nat Med 21:638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a research grant from Sanofi-Aventis U.S. to J.M.K. and FJQ, by a grant from King Abdulaziz City for Science and Technology to J.M.K. and FJQ, by National Institutes of Health grants HL095722, and by the Fundação para a Ciência e a Tecnologia through MIT-Portugal-TB/ECE/0013/2013 (to J.M.K.). V.R. received support from an educational grant from Mallinckrodt Pharmaceuticals (A219074) and by a fellowship from the German Research Foundation (DFG RO4866 1/1).

Author information

Authors and Affiliations

Authors

Contributions

O.L., V.R., and I.M. co-wrote the paper, designed experiments, performed experiments, and analyzed and interpreted data. Z.T., R.K., M.B., Q.W., T.M., and C.P. designed experiments, performed experiments, and analyzed and interpreted data. A.Y., J.K., H.S., J.M., M.H., Y.M., H.K., and H.L. performed experiments and analyzed data. W.S., M.M., J.R., M.A., S.M., and A.A. designed experiments and interpreted data. F.J.Q. and J.M.K. co-wrote the paper, designed experiments, and interpreted data.

Corresponding authors

Correspondence to Francisco J. Quintana or Jeffrey M. Karp.

Ethics declarations

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted and ethical approval was obtained from the Institutional Animal Care and Use Committee at Harvard Medical School.

Conflict of interest

Q. W., T. M., C.P., W. S., M.-C. M., and J.R. are employed by Sanofi. JMK has been a paid consultant and or equity holder for companies including Stempeutics, Sanofi, Celltex, LifeVaultBio, Tissium, Takeda, Skintifique, Alivio Therapeutics, Altrix Bio, Ligandal, Vyome, Camden Partners, Stemgent, Gyro Gear, Mirakel, Landsdowne Labs, Biogen, Pancryos, Element Biosciences, Frequency Therapeutics, Molecular Infusions, Quthero, and Mesoblast. JMK is also an inventor on a patent that was licensed to Mesoblast. JMK holds equity in Frequency Therapeutics, a company that has licensed IP generated by JMK that may benefit financially if the IP is further validated. The interests of JMK were reviewed and are subject to a management plan overseen by his institutions in accordance with its conflict of interest policies.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PPTX 56.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, O., Rothhammer, V., Mascanfroni, I. et al. A cell-based drug delivery platform for treating central nervous system inflammation. J Mol Med 99, 663–671 (2021). https://doi.org/10.1007/s00109-020-02003-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-02003-9

Keywords

Navigation