Skip to main content
Log in

Critical roles of macrophages in pressure overload-induced cardiac remodeling

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Macrophages are integral components of the mammalian heart that show extensive expansion in response to various internal or external stimuli. After the onset of sustained pressure overload (PO), the accumulation of cardiac macrophages through local macrophage proliferation and monocyte migration has profound effects on the transition to cardiac hypertrophy and remodeling. In this review, we describe the heterogeneity and diversity of cardiac macrophages and summarize the current understanding of the important roles of macrophages in PO-induced cardiac remodeling. In addition, the possible mechanisms involved in macrophage modulation are also described. Finally, considering the significant effects of cardiac macrophages, we highlight their emerging role as therapeutic targets for alleviating pathological cardiac remodeling after PO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

AAC:

Abdominal aortic constriction

Ang II:

Angiotensin II

CCL:

C-C motif chemokine ligand

CCR:

C-C motif chemokine receptor

CD:

Cluster of differentiation

CM:

Cardiomyocyte

CSF2:

Colony-stimulating factor 2

CX3C:

C-X3-C motif chemokine

CXCL:

Chemokine (C-X-C motif) ligand

CXCR:

C-X-C motif chemokine receptor

DNMT3A:

DNA methyltransferase 3 alpha

GATA3:

GATA binding protein 3

HF:

Heart failure

HIF:

Hypoxia inducible factor

HLA:

Human leukocyte antigen

ICAM1:

Intercellular cell adhesion molecule 1

IFN–γ:

Interferon gamma

IM:

Interstitial macrophage

KO:

Knockout

LFA-1:

Lymphocyte function-associated antigen-1

M-CSF:

Macrophage-colony stimulating factor

MI:

Myocardial infarction

MIF:

Macrophage migration inhibitory factor

NLRP3:

NLR family pyrin domain containing 3

PHD:

Prolyl hydroxylase domain

PI3K:

Phosphatidylinositol 3-kinase

PO:

Pressure overload

RAS:

Renin-angiotensin system

RHOA:

Ras homolog family member A

SNP:

Single nucleotide polymorphism

TAC:

Transverse aortic constriction

TET2:

Tet methylcytosine dioxygenase 2

TNFα:

Tumor necrosis factor α

TRAF6:

TNF receptor-associated factor 6

XCL:

Chemokine (X-C motif) ligand

WT:

Wild type

References

  1. Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15:387–407

    CAS  PubMed  Google Scholar 

  2. Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262

    CAS  PubMed  Google Scholar 

  3. Ziaeian B, Fonarow GC (2016) Epidemiology and aetiology of heart failure. Nat Rev Cardiol 13:368–378

    PubMed  PubMed Central  Google Scholar 

  4. Schiattarella GG, Hill JA (2015) Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation 131:1435–1447

    PubMed  PubMed Central  Google Scholar 

  5. Dadson K, Kovacevic V, Rengasamy P, Kim GH, Boo S, Li RK, George I, Schulze PC, Hinz B, Sweeney G (2016) Cellular, structural and functional cardiac remodelling following pressure overload and unloading. Int J Cardiol 216:32–42

    PubMed  Google Scholar 

  6. Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, Liehn EA, Gomes CPC, Schulz R, Hausenloy DJ (2019) Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res 115:1117–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y, Huang Z, Li H (2017) Insights into innate immune signalling in controlling cardiac remodelling. Cardiovasc Res 113:1538–1550

    CAS  PubMed  Google Scholar 

  8. Latet SC, Hoymans VY, Van Herck PL, Vrints CJ (2015) The cellular immune system in the post-myocardial infarction repair process. Int J Cardiol 179:240–247

    PubMed  Google Scholar 

  9. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA et al (2016) Revisiting cardiac cellular composition. Circ Res 118:400–409

    CAS  PubMed  Google Scholar 

  10. Wang L, Yu P, Zhou B, Song J, Li Z, Zhang M, Guo G, Wang Y, Chen X, Han L, Hu S (2020) Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol 22:108–119

    CAS  PubMed  Google Scholar 

  11. Kamo T, Akazawa H, Komuro I (2015) Cardiac nonmyocytes in the hub of cardiac hypertrophy. Circ Res 117:89–98

    CAS  PubMed  Google Scholar 

  12. Frieler RA, Mortensen RM (2015) Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 131:1019–1030

    PubMed  PubMed Central  Google Scholar 

  13. Martini E, Kunderfranco P, Peano C, Carullo P, Cremonesi M, Schorn T, Carriero R, Termanini A, Colombo FS, Jachetti E, Panico C, Faggian G, Fumero A, Torracca L, Molgora M, Cibella J, Pagiatakis C, Brummelman J, Alvisi G, Mazza EMC, Colombo MP, Lugli E, Condorelli G, Kallikourdis M (2019) Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation 140:2089–2107

    CAS  PubMed  Google Scholar 

  14. Hulsmans M, Sam F, Nahrendorf M (2016) Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol 93:149–155

    CAS  PubMed  Google Scholar 

  15. Kim AJ, Xu N, Umeyama K, Hulin A, Ponny SR, Vagnozzi RJ, Green EA, Hanson P, McManus BM, Nagashima H et al (2020) Deficiency of circulating monocytes ameliorates the progression of myxomatous valve degeneration in Marfan syndrome. Circulation 141:132–146

    PubMed  PubMed Central  Google Scholar 

  16. Kim AJ, Xu N, Yutzey KE (2020) Macrophage lineages in heart valve development and disease. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa062

  17. Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X, Godwin J, Rosenthal N, Kovacic JC (2018) The macrophage in cardiac homeostasis and disease JACC macrophage in CVD series (part 4). J Am Coll Cardiol 72:2213–2230

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Honold L, Nahrendorf M (2018) Resident and monocyte-derived macrophages in cardiovascular disease. Circ Res 122:113–127

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Glezeva N, Horgan S, Baugh JA (2015) Monocyte and macrophage subsets along the continuum to heart failure: misguided heroes or targetable villains? J Mol Cell Cardiol 89:136–145

    CAS  PubMed  Google Scholar 

  20. Ren Z, Yu P, Li D, Li Z, Liao Y, Wang Y, Zhou B, Wang L (2020) Single-cell reconstruction of progression trajectory reveals intervention principles in pathological cardiac hypertrophy. Circulation 141:1704–1719

    CAS  PubMed  Google Scholar 

  21. Kain D, Amit U, Yagil C, Landa N, Naftali-Shani N, Molotski N, Aviv V, Feinberg MS, Goitein O, Kushnir T, Konen E, Epstein FH, Yagil Y, Leor J (2016) Macrophages dictate the progression and manifestation of hypertensive heart disease. Int J Cardiol 203:381–395

    PubMed  Google Scholar 

  22. Blériot C, Chakarov S, Ginhoux F (2020) Determinants of resident tissue macrophage identity and function. Immunity 52:957–970

    PubMed  Google Scholar 

  23. Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC (2012) The three human monocyte subsets: implications for health and disease. Immunol Res 53:41–57

    CAS  PubMed  Google Scholar 

  24. Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, Bigley V, Flavell RA, Gilroy DW, Asquith B, Macallan D, Yona S (2017) The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 214:1913–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas GD, Hamers AAJ, Nakao C, Marcovecchio P, Taylor AM, McSkimming C, Nguyen AT, McNamara CA, Hedrick CC (2017) Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry. Arterioscler Thromb Vasc Biol 37:1548–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS, Kim C, McSkimming C, Taylor AM, Nguyen AT, McNamara CA, Hedrick CC (2019) Human monocyte heterogeneity as revealed by high-dimensional mass cytometry. Arterioscler Thromb Vasc Biol 39:25–36

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mildner A, Marinkovic G, Jung S (2016) Murine monocytes: origins, subsets, fates, and functions. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.MCHD-0033-2016

  28. Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC (2019) Nonclassical monocytes in health and disease. Annu Rev Immunol 37:439–456

    CAS  PubMed  Google Scholar 

  29. Briseno CG, Haldar M, Kretzer NM, Wu X, Theisen DJ, Kc W, Durai V, Grajales-Reyes GE, Iwata A, Bagadia P et al (2016) Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep 15:2462–2474

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Davies LC, Taylor PR (2015) Tissue-resident macrophages: then and now. Immunology 144:541–548

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551

    PubMed  Google Scholar 

  32. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dick SA, Macklin JA, Nejat S, Momen A, Clemente-Casares X, Althagafi MG, Chen J, Kantores C, Hosseinzadeh S, Aronoff L, Wong A, Zaman R, Barbu I, Besla R, Lavine KJ, Razani B, Ginhoux F, Husain M, Cybulsky MI, Robbins CS, Epelman S (2019) Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat Immunol 20:29–39

    CAS  PubMed  Google Scholar 

  34. Chakarov S, Lim HY, Tan L, Lim SY, See P, Lum J, Zhang XM, Foo S, Nakamizo S, Duan K et al (2019) Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science (New York, NY):363. https://doi.org/10.1126/science.aau0964

  35. Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G, Mack M, Prabhu SD (2018) CCR2(+) monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl Sci 3:230–244

    PubMed  PubMed Central  Google Scholar 

  36. Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL (2016) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart (vol 111, pg 16029, 2014). Proc Natl Acad Sci U S A 113:E1414–E1414

    Google Scholar 

  37. Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M, Epelman S, Kreisel D, Liu Y, Itoh A et al (2018) The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med 24:1234

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leid J, Carrelha J, Boukarabila H, Epelman S, Jacobsen SEW, Lavine KJ (2016) Primitive embryonic macrophages are required for coronary development and maturation. Circ Res 118:1498–U1127

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, Mohan J, Ivey B, Hsiao H-M, Weinheimer C, Kovacs A, Epelman S, Artyomov M, Kreisel D, Lavine KJ (2019) Tissue resident CCR2-and CCR2+cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res 124:263–278

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Katz MG, Fargnoli AS, Gubara SM, Chepurko E, Bridges CR, Hajjar RJ (2019) Surgical and physiological challenges in the development of left and right heart failure in rat models. Heart Fail Rev 24:759–777

    PubMed  PubMed Central  Google Scholar 

  41. Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D, Lindner D (2019) Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 114:19

    PubMed  Google Scholar 

  42. Chen XH, Ruan CC, Ge Q, Ma Y, Xu JZ, Zhang ZB, Lin JR, Chen DR, Zhu DL, Gao PJ (2018) Deficiency of complement C3a and C5a receptors prevents angiotensin II-induced hypertension via regulatory T cells. Circ Res 122:970–983

    CAS  PubMed  Google Scholar 

  43. Sharma RK, Yang T, Oliveira AC, Lobaton GO, Aquino V, Kim S, Richards EM, Pepine CJ, Sumners C, Raizada MK (2019) Microglial cells impact gut microbiota and gut pathology in angiotensin II-induced hypertension. Circ Res 124:727–736

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–805

    CAS  PubMed  Google Scholar 

  45. Malhotra R, Sadoshima J, Brosius FC 3rd, Izumo S (1999) Mechanical stretch and angiotensin II differentially upregulate the renin-angiotensin system in cardiac myocytes in vitro. Circ Res 85:137–146

    CAS  PubMed  Google Scholar 

  46. Ding Y, Wang Y, Jia Q, Wang X, Lu Y, Zhang A, Lv S, Zhang J (2020) Morphological and functional characteristics of animal models of myocardial fibrosis induced by pressure overload. Int J Hypertens 2020:3014693

    PubMed  PubMed Central  Google Scholar 

  47. Richards DA, Aronovitz MJ, Calamaras TD, Tam K, Martin GL, Liu P, Bowditch HK, Zhang P, Huggins GS, Blanton RM (2019) Distinct phenotypes induced by three degrees of transverse aortic constriction in mice. Sci Rep 9:5844

    PubMed  PubMed Central  Google Scholar 

  48. Wang L, Zhang YL, Lin QY, Liu Y, Guan XM, Ma XL, Cao HJ, Liu Y, Bai J, Xia YL, du J, Li HH (2018) CXCL1-CXCR2 axis mediates angiotensin II-induced cardiac hypertrophy and remodelling through regulation of monocyte infiltration. Eur Heart J 39:1818–1831

    CAS  PubMed  Google Scholar 

  49. Luo YX, Tang X, An XZ, Xie XM, Chen XF, Zhao X, Hao DL, Chen HZ, Liu DP (2017) SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J 38:1389–1398

    CAS  PubMed  Google Scholar 

  50. Zhang ZZ, Wang W, Jin HY, Chen X, Cheng YW, Xu YL, Song B, Penninger JM, Oudit GY, Zhong JC (2017) Apelin is a negative regulator of angiotensin II-mediated adverse myocardial remodeling and dysfunction. Hypertension (Dallas, Tex: 1979) 70:1165–1175

    CAS  Google Scholar 

  51. Patrucco E, Domes K, Sbroggió M, Blaich A, Schlossmann J, Desch M, Rybalkin SD, Beavo JA, Lukowski R, Hofmann F (2014) Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proc Natl Acad Sci U S A 111:12925–12929

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bollen Y, Post J, Koo BK, Snippert HJG (2018) How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Res 46:6435–6454

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim H, Kim M, Im SK, Fang S (2018) Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res 34:147–159

    PubMed  PubMed Central  Google Scholar 

  54. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440

    CAS  PubMed  Google Scholar 

  55. Willeford A, Suetomi T, Nickle A, Hoffman HM, Miyamoto S, Heller Brown J (2018) CaMKIIdelta-mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis. JCI Insight 3. https://doi.org/10.1172/jci.insight.97054

  56. Suetomi T, Willeford A, Brand CS, Cho Y, Ross RS, Miyamoto S, Brown JH (2018) Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca(2+)/calmodulin-dependent protein kinase II delta signaling in cardiomyocytes are essential for adverse cardiac remodeling. Circulation 138:2530–2544

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Qi D, Wei M, Jiao S, Song Y, Wang X, Xie G, Taranto J, Liu Y, Duan Y, Yu B, Li H, Shah YM, Xu Q, du J, Gonzalez FJ, Qu A (2019) Hypoxia inducible factor 1alpha in vascular smooth muscle cells promotes angiotensin II-induced vascular remodeling via activation of CCL7-mediated macrophage recruitment. Cell Death Dis 10:544

    PubMed  PubMed Central  Google Scholar 

  58. Ikeda J, Ichiki T, Matsuura H, Inoue E, Kishimoto J, Watanabe A, Sankoda C, Kitamoto S, Tokunou T, Takeda K, Fong GH, Sunagawa K (2013) Deletion of Phd2 in myeloid lineage attenuates hypertensive cardiovascular remodeling. J Am Heart Assoc 2. https://doi.org/10.1161/JAHA.113.000178

  59. Sano S, Oshima K, Wang Y, MacLauchlan S, Katanasaka Y, Sano M, Zuriaga MA, Yoshiyama M, Goukassian D, Cooper MA, Fuster JJ, Walsh K (2018) Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1beta/NLRP3 inflammasome. J Am Coll Cardiol 71:875–886

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sano S, Oshima K, Wang Y, Katanasaka Y, Sano M, Walsh K (2018) CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ Res 123:335–341

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Z, Xu Y, Wang M, Ye J, Liu J, Jiang H, Ye D, Wan J (2018) TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice. EBioMedicine 36:54–62

    PubMed  PubMed Central  Google Scholar 

  62. Liao X, Shen Y, Zhang R, Sugi K, Vasudevan NT, Alaiti MA, Sweet DR, Zhou L, Qing Y, Gerson SL, Fu C, Wynshaw-Boris A, Hu R, Schwartz MA, Fujioka H, Richardson B, Cameron MJ, Hayashi H, Stamler JS, Jain MK (2018) Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. Proc Natl Acad Sci U S A 115:E4661–e4669

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Glasenapp A, Derlin K, Wang Y, Bankstahl M, Meier M, Wollert KC, Bengel FM, Thackeray JT (2020) Multimodality imaging of inflammation and ventricular remodeling in pressure-overload heart failure. J Nuclear Med 61:590–596

    CAS  Google Scholar 

  64. Weisheit C, Zhang Y, Faron A, Koepke O, Weisheit G, Steinstraesser A, Frede S, Meyer R, Boehm O, Hoeft A et al (2014) Ly6C(low) and not Ly6C(high) macrophages accumulate first in the heart in a model of murine pressure-overload. PLoS One 9. https://doi.org/10.1371/journal.pone.0112710

  65. Fujiu K, Shibata M, Nakayama Y, Ogata F, Matsumoto S, Noshita K, Iwami S, Nakae S, Komuro I, Nagai R, Manabe I (2017) A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nat Med 23:611–622

    CAS  PubMed  Google Scholar 

  66. Patel B, Ismahil MA, Hamid T, Bansal SS, Prabhu SD (2017) Mononuclear phagocytes are dispensable for cardiac remodeling in established pressure-overload heart failure. PLoS One 12:e0170781

    PubMed  PubMed Central  Google Scholar 

  67. Miller MC, Mayo KH (2017) Chemokines from a structural perspective. Int J Mol Sci 18. https://doi.org/10.3390/ijms18102088

  68. Stone MJ, Hayward JA, Huang C, Huma ZE, Sanchez J (2017) Mechanisms of regulation of the chemokine-receptor network. Int J Mol Sci 18. https://doi.org/10.3390/ijms18020342

  69. Shen JZ, Morgan J, Tesch GH, Fuller PJ, Young MJ (2014) CCL2-dependent macrophage recruitment is critical for mineralocorticoid receptor-mediated cardiac fibrosis, inflammation, and blood pressure responses in male mice. Endocrinology 155:1057–1066

    CAS  PubMed  Google Scholar 

  70. Nemska S, Monassier L, Gassmann M, Frossard N, Tavakoli R (2016) Kinetic mRNA profiling in a rat model of left-ventricular hypertrophy reveals early expression of chemokines and their receptors. PLoS One 11:e0161273

    PubMed  PubMed Central  Google Scholar 

  71. Collado A, Marques P, Escudero P, Rius C, Domingo E, Martinez-Hervas S, Real JT, Ascaso JF, Piqueras L, Sanz MJ (2018) Functional role of endothelial CXCL16/CXCR6-platelet-leucocyte axis in angiotensin II-associated metabolic disorders. Cardiovasc Res 114:1764–1775

    CAS  PubMed  Google Scholar 

  72. Salvador AM, Nevers T, Velazquez F, Aronovitz M, Wang B, Abadia Molina A, Jaffe IZ, Karas RH, Blanton RM, Alcaide P (2016) Intercellular adhesion molecule 1 regulates left ventricular leukocyte infiltration, cardiac remodeling, and function in pressure overload-induced heart failure. J Am Heart Assoc 5:e003126

    PubMed  PubMed Central  Google Scholar 

  73. Zhang YL, Geng C, Yang J, Fang J, Yan X, Li PB, Zou LX, Chen C, Guo SB, Li HH, Liu Y (2019) Chronic inhibition of chemokine receptor CXCR2 attenuates cardiac remodeling and dysfunction in spontaneously hypertensive rats. Biochim Biophys Acta Mol basis Dis 1865:165551

    CAS  PubMed  Google Scholar 

  74. Lin QY, Lang PP, Zhang YL, Yang XL, Xia YL, Bai J, Li HH (2019) Pharmacological blockage of ICAM-1 improves angiotensin II-induced cardiac remodeling by inhibiting adhesion of LFA-1(+) monocytes. Am J Phys Heart Circ Phys 317:H1301–h1311

    CAS  Google Scholar 

  75. Xu X, Hua Y, Nair S, Bucala R, Ren J (2014) Macrophage migration inhibitory factor deletion exacerbates pressure overload-induced cardiac hypertrophy through mitigating autophagy. Hypertension (Dallas, Tex: 1979) 63:490–499

    CAS  Google Scholar 

  76. Koga K, Kenessey A, Ojamaa K (2013) Macrophage migration inhibitory factor antagonizes pressure overload-induced cardiac hypertrophy. Am J Phys Heart Circ Phys 304:H282–H293

    CAS  Google Scholar 

  77. Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, Sun Y, Da Silva N, Panizzi P, van der Laan AM et al (2014) Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res 115:284–295

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pinto AR, Paolicelli R, Salimova E, Gospocic J, Slonimsky E, Bilbao-Cortes D, Godwin JW, Rosenthal NA (2012) An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS One 7:e36814

    CAS  PubMed  PubMed Central  Google Scholar 

  79. DeBerge M, Zhang S, Glinton K, Grigoryeva L, Hussein I, Vorovich E, Ho K, Luo X, Thorp EB (2017) Efferocytosis and outside-in signaling by cardiac phagocytes. Links to repair, cellular programming, and intercellular crosstalk in heart. Front Immunol 8:1428

    PubMed  PubMed Central  Google Scholar 

  80. Gomez I, Duval V, Silvestre JS (2018) Cardiomyocytes and macrophages discourse on the method to govern cardiac repair. Front Cardiovasc Med 5:134

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, Hucker WJ, Wülfers EM, Seemann G, Courties G et al (2017) Macrophages facilitate electrical conduction in the heart. Cell 169:510–522.e520

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kimura A, Ishida Y, Furuta M, Nosaka M, Kuninaka Y, Taruya A, Mukaida N, Kondo T (2018) Protective roles of interferon-gamma in cardiac hypertrophy induced by sustained pressure overload. J Am Heart Assoc 7. https://doi.org/10.1161/jaha.117.008145

  83. Tindemans I, Serafini N, Di Santo JP, Hendriks RW (2014) GATA-3 function in innate and adaptive immunity. Immunity 41:191–206

    CAS  PubMed  Google Scholar 

  84. Yang M, Song L, Wang L, Yukht A, Ruther H, Li F, Qin M, Ghiasi H, Sharifi BG, Shah PK (2018) Deficiency of GATA3-positive macrophages improves cardiac function following myocardial infarction or pressure overload hypertrophy. J Am Coll Cardiol 72:885–904

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bradshaw AD, Baicu CF, Rentz TJ, Van Laer AO, Boggs J, Lacy JM, Zile MR (2009) Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing. Circulation 119:269–280

    CAS  PubMed  Google Scholar 

  86. Bradshaw AD (2016) The role of secreted protein acidic and rich in cysteine (SPARC) in cardiac repair and fibrosis: does expression of SPARC by macrophages influence outcomes? J Mol Cell Cardiol 93:156–161

    CAS  PubMed  Google Scholar 

  87. McDonald LT, Zile MR, Zhang Y, Van Laer AO, Baicu CF, Stroud RE, Jones JA, LaRue AC, Bradshaw AD (2018) Increased macrophage-derived SPARC precedes collagen deposition in myocardial fibrosis. Am J Phys Heart Circ Phys 315:H92–h100

    CAS  Google Scholar 

  88. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207

    CAS  PubMed  Google Scholar 

  89. Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, Peters T, Hazebroek M, Stoger L, Wijnands E et al (2013) Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:1420–1432

    CAS  PubMed  Google Scholar 

  90. Lee T-M, Harn H-J, Chiou T-W, Chuang M-H, Chen C-H, Chuang C-H, Lin P-C, Lin S-Z (2019) Remote transplantation of human adipose-derived stem cells induces regression of cardiac hypertrophy by regulating the macrophage polarization in spontaneously hypertensive rats. Redox Biol 27. https://doi.org/10.1016/j.redox.2019.101170

  91. Kallikourdis M, Martini E, Carullo P, Sardi C, Roselli G, Greco CM, Vignali D, Riva F, Ormbostad Berre AM, Stolen TO et al (2017) T cell costimulation blockade blunts pressure overload-induced heart failure. Nat Commun 8:14680

    PubMed  PubMed Central  Google Scholar 

  92. Zhao RR, Ackers-Johnson M, Stenzig J, Chen C, Ding T, Zhou Y, Wang P, Ng SL, Li PY, Teo G, Rudd PM, Fawcett JW, Foo RSY (2018) Targeting chondroitin sulfate glycosaminoglycans to treat cardiac fibrosis in pathological remodeling. Circulation 137:2497–2513

    CAS  PubMed  Google Scholar 

  93. Bosch L, de Haan J, Seijkens T, van Tiel C, Brans M, Pasterkamp G, Lutgens E, de Jager S (2019) Small molecule-mediated inhibition of CD40-TRAF6 reduces adverse cardiac remodelling in pressure overload induced heart failure. Int J Cardiol 279:141–144

    PubMed  Google Scholar 

  94. Zheng RH, Bai XJ, Zhang WW, Wang J, Bai F, Yan CP, James EA, Bose HS, Wang NP, Zhao ZQ (2019) Liraglutide attenuates cardiac remodeling and improves heart function after abdominal aortic constriction through blocking angiotensin II type 1 receptor in rats. Drug Des Dev Ther 13:2745–2757

    CAS  Google Scholar 

  95. Li R, Lu K, Wang Y, Chen M, Zhang F, Shen H, Yao D, Gong K, Zhang Z (2017) Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression. Biochem Biophys Res Commun 485:69–75

    CAS  PubMed  Google Scholar 

  96. Zhang X, Meng F, Song J, Zhang L, Wang J, Li D, Li L, Dong P, Yang B, Chen Y (2016) Pentoxifylline ameliorates cardiac fibrosis, pathological hypertrophy, and cardiac dysfunction in angiotensin II-induced hypertensive rats. J Cardiovasc Pharmacol 67:76–85

    CAS  PubMed  Google Scholar 

  97. Hashimoto T, Sivakumaran V, Carnicer R, Zhu G, Hahn VS, Bedja D, Recalde A, Duglan D, Channon KM, Casadei B, Kass DA (2016) Tetrahydrobiopterin protects against hypertrophic heart disease independent of myocardial nitric oxide synthase coupling. J Am Heart Assoc 5:e003208

    PubMed  PubMed Central  Google Scholar 

  98. Podaru MN, Fields L, Kainuma S, Ichihara Y, Hussain M, Ito T, Kobayashi K, Mathur A, D'Acquisto F, Lewis-McDougall F et al (2019) Reparative macrophage transplantation for myocardial repair: a refinement of bone marrow mononuclear cell-based therapy. Basic Res Cardiol 114:34

    PubMed  PubMed Central  Google Scholar 

  99. Padmanabhan S, Joe B (2017) Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans. Physiol Rev 97:1469–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Huan T, Esko T, Peters MJ, Pilling LC, Schramm K, Schurmann C, Chen BH, Liu C, Joehanes R, Johnson AD, Yao C, Ying SX, Courchesne P, Milani L, Raghavachari N, Wang R, Liu P, Reinmaa E, Dehghan A, Hofman A, Uitterlinden AG, Hernandez DG, Bandinelli S, Singleton A, Melzer D, Metspalu A, Carstensen M, Grallert H, Herder C, Meitinger T, Peters A, Roden M, Waldenberger M, Dörr M, Felix SB, Zeller T, International Consortium for Blood Pressure GWAS (ICBP), Vasan R, O'Donnell CJ, Munson PJ, Yang X, Prokisch H, Völker U, van Meurs JBJ, Ferrucci L, Levy D (2015) A meta-analysis of gene expression signatures of blood pressure and hypertension. PLoS Genet 11:e1005035

    PubMed  PubMed Central  Google Scholar 

  101. Liu X, Meng F, Yang P (2013) Association study of CD36 single nucleotide polymorphisms with essential hypertension in the Northeastern Han Chinese. Gene 527:410–415

    CAS  PubMed  Google Scholar 

  102. Ehret GB, O'Connor AA, Weder A, Cooper RS, Chakravarti A (2009) Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. Eur J Hum Genet 17:1650–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Papalexi E, Satija R (2018) Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 18:35–45

    CAS  PubMed  Google Scholar 

  104. See P, Lum J, Chen J, Ginhoux F (2018) A single-cell sequencing guide for immunologists. Front Immunol 9:2425

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81900219, 81530012, 81800216), the Fundamental Research Funds for the Central Universities (2042019kf0062, 2042018kf1032), Development Center for Medical Science and Technology National Health and Family Planning Commission of the People’s Republic of China (2016ZX-008-01), and National Key R&D Program of China (2018YFC1311300).

Author information

Authors and Affiliations

Authors

Contributions

Dan Yang, Han-Qing Liu, Di Fan, and Qi-Zhu Tang contributed to the conception and design of the review; Fang-Yuan Liu, Nan Tang, Zhen Guo, Shu-Qing Ma, Peng An, and Ming-Yu Wang performed the literature search and data analysis; the first draft of the manuscript was written by Dan Yan and Han-Qing Liu; Hai-Ming Wu, Zheng Yang, Di Fan, and Qi-Zhu Tang critically revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Di Fan or Qi-Zhu Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Liu, HQ., Liu, FY. et al. Critical roles of macrophages in pressure overload-induced cardiac remodeling. J Mol Med 99, 33–46 (2021). https://doi.org/10.1007/s00109-020-02002-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-02002-w

Keywords

Navigation