Skip to main content

Pyruvate dehydrogenase kinase/lactate axis: a therapeutic target for neovascular age-related macular degeneration identified by metabolomics


Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in aging populations. Here, we applied metabolomics to human sera of patients with nAMD during an active (exudative) phase of the pathology and found higher lactate levels and a shift in the lipoprotein profile (increased VLDL-LDL/HDL ratio). Similar metabolomics changes were detected in the sera of mice subjected to laser-induced choroidal neovascularization (CNV). In this experimental model, we provide evidence for two sites of lactate production: first, a local one in the injured eye, and second a systemic site associated with the recruitment of bone marrow–derived inflammatory cells. Mechanistically, lactate promotes the angiogenic response and M2-like macrophage accumulation in the eyes. The therapeutic potential of our findings is demonstrated by the pharmacological control of lactate levels through pyruvate dehydrogenase kinase (PDK) inhibition by dichloroacetic acid (DCA). Mice treated with DCA exhibited normalized lactate levels and lipoprotein profiles, and inhibited CNV formation. Collectively, our findings implicate the key role of the PDK/lactate axis in AMD pathogenesis and reveal that the regulation of PDK activity has potential therapeutic value in this ocular disease. The results indicate that the lipoprotein profile is a traceable pattern that is worth considering for patient follow-up.

Key messages

  • Lactate and lipoprotein profile are associated with the active phase of AMD and CNV development.

  • Lactate is a relevant and functional metabolite correlated with AMD progression.

  • Modulating lactate through pyruvate dehydrogenase kinase led to a decrease of CNV progression.

  • Pyruvate dehydrogenase kinase is a new therapeutic target for neovascular AMD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The metabolomics and all the data reported in this paper are available on demand from the Laboratory of Biology and Tumor Development and the Metabolomics Group of the University of Liège.


  1. Colijn JM, Buitendijk GHS, Prokofyeva E, Alves D, Cachulo ML, Khawaja AP, Cougnard-Gregoire A, Merle BMJ, Korb C, Erke MG, Bron A, Anastasopoulos E, Meester-Smoor MA, Segato T, Piermarocchi S, de Jong PTVM, Vingerling JR, Topouzis F, Creuzot-Garcher C, Bertelsen G, Pfeiffer N, Fletcher AE, Foster PJ, Silva R, Korobelnik J-F, Delcourt C, Klaver CCW, EYE-RISK consortium, European Eye Epidemiology (E3) consortium (2017) Prevalence of age-related macular degeneration in Europe: the past and the future. Ophthalmology 124:1753–1763

    PubMed  PubMed Central  Google Scholar 

  2. Schmidt-Erfurth U, Klimscha S, Waldstein SM, Bogunović H (2017) A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye (Lond) 31:26–44

    CAS  Google Scholar 

  3. Lai T-T, Hsieh Y-T, Yang C-M, Ho T-C, Yang C-H (2019) Biomarkers of optical coherence tomography in evaluating the treatment outcomes of neovascular age-related macular degeneration: a real-world study. Sci Rep 9.,

  4. Cascella R, Strafella C, Caputo V, Errichiello V, Zampatti S, Milano F, Potenza S, Mauriello S, Novelli G, Ricci F, Cusumano A, Giardina E (2018) Towards the application of precision medicine in age-related macular degeneration. Prog Retin Eye Res 63:132–146

    CAS  PubMed  Google Scholar 

  5. DeAngelis MM, Owen LA, Morrison MA, Morgan DJ, Li M, Shakoor A, Vitale A, Iyengar S, Stambolian D, Kim IK, Farrer LA (2017) Genetics of age-related macular degeneration (AMD). Hum Mol Genet 26:R45–R50

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu K, Chen LJ, Lai TY, Tam PO, Ho M, Chiang SW, Liu DT, Young AL, Yang Z, Pang CP (2014) Genes in the high-density lipoprotein metabolic pathway in age-related macular degeneration and polypoidal choroidal vasculopathy. Ophthalmology 121:911–916

    PubMed  Google Scholar 

  7. Nita M, Grzybowski A, Ascaso FJ, Huerva V (2014) Age-related macular degeneration in the aspect of chronic low-grade inflammation (pathophysiological parainflammation). Mediat Inflamm 2014:930671–930610

    Google Scholar 

  8. Lavalette S, Raoul W, Houssier M, Camelo S, Levy O, Calippe B, Jonet L, Behar-Cohen F, Chemtob S, Guillonneau X, Combadiere C, Sennlaub F (2011) Interleukin-1beta inhibition prevents choroidal neovascularization and does not exacerbate photoreceptor degeneration. Am J Pathol 178:2416–2423

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Doyle SL, Ozaki E, Brennan K, Humphries MM, Mulfaul K, Keaney J, Kenna PF, Maminishkis A, Kiang AS, Saunders SP, Hams E, Lavelle EC, Gardiner C, Fallon PG, Adamson P, Humphries P, Campbell M (2014) IL-18 attenuates experimental choroidal neovascularization as a potential therapy for wet age-related macular degeneration. Sci Transl Med 6:230ra44

    PubMed  Google Scholar 

  10. Xi H, Katschke KJ Jr, Li Y, Truong T, Lee WP, Diehl L, Rangell L, Tao J, Arceo R, Eastham-Anderson J, Hackney JA, Iglesias A, Cote-Sierra J, Elstrott J, Weimer RM, Campagne MV (2016) IL-33 amplifies an innate immune response in the degenerating retina. J Exp Med 213:189–207

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Colijn JM, den Hollander AI, Demirkan A, Cougnard-Grégoire A, Verzijden T, Kersten E, Meester-Smoor MA, Merle BMJ, Papageorgiou G, Ahmad S, Mulder MT, Costa MA, Benlian P, Bertelsen G, Bron AM, Claes B, Creuzot-Garcher C, Erke MG, Fauser S, Foster PJ, Hammond CJ, Hense H-W, Hoyng CB, Khawaja AP, Korobelnik J-F, Piermarocchi S, Segato T, Silva R, Souied EH, Williams KM, van Duijn CM, Delcourt C, Klaver CCW, Acar N, Altay L, Anastosopoulos E, Azuara-Blanco A, Berendschot T, Berendschot T, Bergen A, Bertelsen G, Binquet C, Bird A, Bobak M, Larsen MB, Boon C, Bourne R, Brétillon L, Broe R, Bron A, Buitendijk G, Cachulo ML, Capuano V, Carrière I, Chakravarthy U, Chan M, Chang P, Colijn J, Cougnard-Grégoire A, Cree A, Creuzot-Garcher C, Cumberland P, Cunha-Vaz J, Daien V, De Jong E, Deak G, Delcourt C, Delyfer M-N, den Hollander A, Dietzel M, Erke MG, Faria P, Farinha C, Fauser S, Finger R, Fletcher A, Foster P, Founti P, Gorgels T, Grauslund J, Grus F, Hammond C, Heesterbeek T, Hense H-W, Hermann M, Hoehn R, Hogg R, Holz F, Hoyng C, Jansonius N, Janssen S, de Jong E, Khawaja A, Klaver C, Korobelnik J-F, Lamparter J, Le Goff M, Lehtimäki T, Leung I, Lotery A, Mauschitz M, Meester M, Merle B, Meyer zu Westrup V, Midena E, Miotto S, Mirshahi A, Mohan-Saïd S, Mueller M, Muldrew A, Murta J, Nickels S, Nunes S, Owen C, Peto T, Pfeiffer N, Piermarocchi S, Prokofyeva E, Rahi J, Raitakari O, Rauscher F, Ribeiro L, Rougier M-B, Rudnicka A, Sahel J, Salonikiou A, Sanchez C, Schick T, Schmitz-Valckenberg S, Schuster A, Schweitzer C, Segato T, Shehata J, Silva R, Silvestri G, Simader C, Souied E, Speckauskas M, Springelkamp H, Tapp R, Topouzis F, van Leeuwen E, Verhoeven V, Verzijden T, Vingerling H, Von Hanno T, Williams K, Wolfram C, Yip J, Zerbib J, Ajana S, Arango-Gonzalez B, Arndt V, Bhatia V, Bhattacharya SS, Biarnés M, Borrell A, Bühren S, Calado SM, Colijn JM, Cougnard-Grégoire A, Dammeier S, de Jong EK, De la Cerda B, Delcourt C, den Hollander AI, Diaz-Corrales FJ, Diether S, Emri E, Endermann T, Ferraro LL, Garcia M, Heesterbeek TJ, Honisch S, Hoyng CB, Kersten E, Kilger E, CCW K, Langen H, Lengyel I, Luthert P, Maugeais C, Meester-Smoor M, BMJ MI, Monés J, Nogoceke E, Peto T, Pool FM, Rodríguez E, Ueffing M, Ulrich Bartz-Schmidt KU, van Leeuwen EM, Verzijden T, Zumbansen M (2019) Increased high-density lipoprotein levels associated with age-related macular degeneration. Ophthalmology 126:393–406

    PubMed  Google Scholar 

  12. Noel A, Jost M, Lambert V, Lecomte J, Rakic JM (2007) Anti-angiogenic therapy of exudative age-related macular degeneration: current progress and emerging concepts. Trends Mol Med 13:345–352

    CAS  PubMed  Google Scholar 

  13. Cheung GCM, Lai TYY, Gomi F, Ruamviboonsuk P, Koh A, Lee WK (2017) Anti-VEGF therapy for neovascular AMD and polypoidal choroidal vasculopathy. Asia Pac J Ophthalmol (Phila) 6:527–534

    CAS  Google Scholar 

  14. Nagai N, Suzuki M, Uchida A, Kurihara T, Kamoshita M, Minami S, Shinoda H, Tsubota K, Ozawa Y (2016) Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment. Sci Rep 6:29619

    PubMed  PubMed Central  Google Scholar 

  15. Sun X, Yang S, Zhao J (2016) Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. DDDT 1857.

  16. Schmidt-Erfurth U, Chong V, Loewenstein A, Larsen M, Souied E, Schlingemann R, Eldem B, Mones J, Richard G, Bandello F (2014) Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol 98:1144–1167

    PubMed  PubMed Central  Google Scholar 

  17. Frédérich M, Pirotte B, Fillet M, de Tullio P (2016) Metabolomics as a challenging approach for medicinal chemistry and personalized medicine. J Med Chem 59:8649–8666

    PubMed  Google Scholar 

  18. Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, Cascante M, Brennan L, Wishart DS, Oresic M, Hankemeier T, Broadhurst DI, Lane AN, Suhre K, Kastenmüller G, Sumner SJ, Thiele I, Fiehn O, Kaddurah-Daouk R, for “Precision Medicine and Pharmacometabolomics Task Group”-Metabolomics Society Initiative (2016) Metabolomics enables precision medicine: “a white paper, community perspective”. Metabolomics 12:149

    PubMed  PubMed Central  Google Scholar 

  19. Li B, He X, Jia W, Li H (2017) Novel applications of metabolomics in personalized medicine: a mini-review. Molecules 22.

  20. Draoui N, de Zeeuw P, Carmeliet P (2017) Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biol 7:170219

    PubMed  PubMed Central  Google Scholar 

  21. Mills E, O’Neill LAJ (2014) Succinate: a metabolic signal in inflammation. Trends Cell Biol 24:313–320

    CAS  PubMed  Google Scholar 

  22. Brown CN, Green BD, Thompson RB, den Hollander AI, Lengyel I (2019) Metabolomics and age-related macular degeneration. Metabolites 9.

  23. Luo D, Deng T, Yuan W, Deng H, Jin M (2017) Plasma metabolomic study in Chinese patients with wet age-related macular degeneration. BMC Ophthalmol 17:165

    PubMed  PubMed Central  Google Scholar 

  24. Mitchell SL, Uppal K, Williamson SM, Liu K, Burgess LG, Tran V, Umfress AC, Jarrell KL, Cooke Bailey JN, Agarwal A, Pericak-Vance M, Haines JL, Scott WK, Jones DP, Brantley MA (2018) The carnitine shuttle pathway is altered in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 59:4978–4985

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Osborn MP, Park Y, Parks MB, Burgess LG, Uppal K, Lee K, Jones DP, Brantley MA Jr (2013) Metabolome-wide association study of neovascular age-related macular degeneration. PLoS One 8:e72737

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Laíns I, Duarte D, Barros AS, Martins AS, Gil J, Miller JB, Marques M, Mesquita T, Kim IK, Cachulo M d L, Vavvas D, Carreira IM, Murta JN, Silva R, Miller JW, Husain D, Gil AM (2017) Human plasma metabolomics in age-related macular degeneration (AMD) using nuclear magnetic resonance spectroscopy. PLoS One 12:e0177749

    PubMed  PubMed Central  Google Scholar 

  27. Lambert V, Lecomte J, Hansen S, Blacher S, Gonzalez ML, Struman I, Sounni NE, Rozet E, de Tullio P, Foidart JM, Rakic JM, Noel A (2013) Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc 8:2197–2211

    CAS  PubMed  Google Scholar 

  28. Adeva M, González-Lucán M, Seco M, Donapetry C (2013) Enzymes involved in l-lactate metabolism in humans. Mitochondrion 13:615–629

    CAS  PubMed  Google Scholar 

  29. Roche TE, Hiromasa Y (2007) Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci 64:830–849

    CAS  PubMed  Google Scholar 

  30. Bian L, Josefsson E, Jonsson IM, Verdrengh M, Ohlsson C, Bokarewa M, Tarkowski A, Magnusson M (2009) Dichloroacetate alleviates development of collagen II-induced arthritis in female DBA/1 mice. Arthritis Res Ther 11:R132

    PubMed  PubMed Central  Google Scholar 

  31. Matheus N, Hansen S, Rozet E, Peixoto P, Maquoi E, Lambert V, Noel A, Frederich M, Mottet D, de Tullio P (2014) An easy, convenient cell and tissue extraction protocol for nuclear magnetic resonance metabolomics. Phytochem Anal: PCA 25:342–349

    CAS  PubMed  Google Scholar 

  32. Sounni NE, Cimino J, Blacher S, Primac I, Truong A, Mazzucchelli G, Paye A, Calligaris D, Debois D, De Tullio P, Mari B, De Pauw E, Noel A (2014) Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab 20:280–294

    CAS  PubMed  Google Scholar 

  33. Mia S, Warnecke A, Zhang X-M, Malmström V, Harris RA (2014) An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF- β yields a dominant immunosuppressive phenotype. Scand J Immunol 79:305–314

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Edin S, Wikberg ML, Rutegård J, Oldenborg P-A, Palmqvist R (2013) Phenotypic skewing of macrophages in vitro by secreted factors from colorectal cancer cells. PLoS One 8:e74982.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Hubert P, van den Brûle F, Giannini SL, Franzen-Detrooz E, Boniver J, Delvenne P (1999) Colonization of in vitro-formed cervical human papillomavirus-associated (pre)neoplastic lesions with dendritic cells. Am J Pathol 154:775–784

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pennesi ME, Neuringer M, Courtney RJ (2012) Animal models of age related macular degeneration. Mol Asp Med 33:487–509

    CAS  Google Scholar 

  37. Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99:989–994

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kersten E, Paun CC, Schellevis RL, Hoyng CB, Delcourt C, Lengyel I, Peto T, Ueffing M, Klaver CCW, Dammeier S, den Hollander AI, de Jong EK (2018) Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv Ophthalmol 63:9–39

    PubMed  Google Scholar 

  39. Porporato PE, Payen VL, De Saedeleer CJ, Préat V, Thissen J-P, Feron O, Sonveaux P (2012) Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 15:581–592

    CAS  PubMed  Google Scholar 

  40. Beckert S, Farrahi F, Aslam RS, Scheuenstuhl H, Konigsrainer A, Hussain MZ, Hunt TK (2006) Lactate stimulates endothelial cell migration. Wound Repair Regen 14:321–324

    PubMed  Google Scholar 

  41. Skeie JM, Mullins RF (2009) Macrophages in neovascular age-related macular degeneration: friends or foes? Eye (Lond) 23:747–755

    CAS  Google Scholar 

  42. Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3578–3585

    PubMed  Google Scholar 

  43. Zandi S, Nakao S, Chun KH, Fiorina P, Sun D, Arita R, Zhao M, Kim E, Schueller O, Campbell S, Taher M, Melhorn MI, Schering A, Gatti F, Tezza S, Xie F, Vergani A, Yoshida S, Ishikawa K, Yamaguchi M, Sasaki F, Schmidt-Ullrich R, Hata Y, Enaida H, Yuzawa M, Yokomizo T, Kim YB, Sweetnam P, Ishibashi T, Hafezi-Moghadam A (2015) ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Rep 10:1173–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MPJ, Donners MMPC (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118

    CAS  PubMed  Google Scholar 

  45. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330

    CAS  PubMed  Google Scholar 

  47. Hurley JB, Lindsay KJ, Du J (2015) Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J Neurosci Res 93:1079–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  48. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663

    PubMed  Google Scholar 

  49. Parmeggiani F, Romano MR, Costagliola C, Semeraro F, Incorvaia C, D’Angelo S, Perri P, De Palma P, De Nadai K, Sebastiani A (2012) Mechanism of inflammation in age-related macular degeneration. Mediat Inflamm 2012:546786–546716

    Google Scholar 

  50. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:349–353

    CAS  PubMed  Google Scholar 

  51. Quennet V, Yaromina A, Zips D, Rosner A, Walenta S, Baumann M, Mueller-Klieser W (2006) Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother Oncol 81:130–135

    CAS  PubMed  Google Scholar 

Download references


We gratefully acknowledge the medical and technical assistance of M. Dumez, N. Marenne, C. Noel, A. Oger, C. Rogister, B. Detry, C. Fink, M. Dehuy, I. Dassoul, P. Roncarati, J. Parotte, J. Lhoest, G. Musso, and C. Benveniste. We thank the GIGA (Groupe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, Belgium) for the access to the several platforms (GIGA-Imaging and Flow Cytometry platform and GIGA-Mouse facility and Transgenics platform) and the Center for Interdisciplinary Research on Medicines (CIRM) for the access to the NMR-Santé platform.


This work was supported by grants from the Fonds de la Recherche Scientifique FNRS (F.R.S.-FNRS, Belgium), the Fonds spéciaux de la Recherche (University of Liège), the Fondation Hospitalo Universitaire Léon Fredericq (FHULF, University of Liège), the REGION WALLONNE (Direction Générale Opérationnelle de l’Economie, de l’Emploi et de la Recherche, SPW, Belgium), and the FEDER project No. DMLA-AB/ULG (Fonds européen de développement régional). P. de Tullio is a Research Director of the F.R.S.-FNRS.

Author information

Authors and Affiliations



V.L. designed the study, performed the in vivo experiments, collected human and murine data with SH, CY, and J. Lecomte. M.S. and J. Leenders performed the metabolomics studies and analyzed the data. M.H. and P.H. performed the assays using macrophages; S.B. performed the computer-assisted quantifications; O.C. performed the bone marrow isolation; P.B., E.D., B.L., and M.T. contributed to patient recruitment and ophthalmic examinations. E.C. and A.G. performed human blood sample analyses; P.d.T. and B.G. performed statistical analyses on metabolomics assays; J-M.R. contributed to the design of the clinical study, data analyses, and manuscript preparation; A.N. designed and supervised the study, analyzed, and interpreted the experimental data, and P.d.T. designed the project, supervised the study, and performed the metabolomics study. A.N. and P.d.T wrote the manuscript and gathered manuscript modifications from the authors. All authors revised the manuscript.

Corresponding author

Correspondence to Pascal de Tullio.

Ethics declarations

Competing interests

The authors declare that they no competing interests.


Animal experiments were performed in compliance with the Animal Ethical Committee of the Liège University (Liège, Belgium) after the approval of the local Animal Ethical Committee. The human study was conducted under protocols approved by the Ethical Committee of the University Hospital of Liège, B7072006295 (Belgium). Informed consent was obtained from all study subjects before participation.

Code availability

Metabolomics data were processed using Bruker Topspin 3.5 and AMIX 3.9 software. Metabolomics analyses were performed using SIMCA 14.1 software. Statistical analyses were performed using GraphPad Prism 7.0 software.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Agnès Noel and Pascal de Tullio equally supervised this paper

Electronic supplementary material


(DOCX 633 kb)


(DOCX 46 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lambert, V., Hansen, S., Schoumacher, M. et al. Pyruvate dehydrogenase kinase/lactate axis: a therapeutic target for neovascular age-related macular degeneration identified by metabolomics. J Mol Med 98, 1737–1751 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Neovascular AMD
  • Metabolomics
  • Inflammation
  • Angiogenesis
  • Therapeutic target
  • Lactate