Skip to main content
Log in

De novo mutation of cancer-related genes associates with particular neurodevelopmental disorders

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Epidemiological studies have shown an increased prevalence of cancer in some patients with neurodevelopmental disorder (NDD); however, the genetic mechanisms regarding how cancer-related genes (CRGs) contribute to NDD remain unclear. We performed bioinformatic analyses on 219 CRGs from OMIM and de novo mutations (DNMs) from 16,498 patients with different NDDs and 3391 controls. Our results showed that autism spectrum disorder, undiagnosed neurodevelopmental disorder, congenital heart disease and intellectual disability, but not epileptic encephalopathy and schizophrenia, harboured significantly more putative functional DNMs in CRGs, compared with controls, providing genetic evidence supporting previous epidemiological surveys. We further detected 26 CRGs with recurrent putative functional DNMs that showed high expression in the human brain during the prenatal stage and in non-brain organs in adults. The proteins coded by the 26 CRGs and known NDD candidate genes formed a functional network that is involved in brain development and tumorigenesis. Overall, we proposed 39 cancer-targeting drugs that could be investigated for treating patients with NDD, which would be potentially cost-effective. In conclusion, DNMs contribute to specific NDDs and there may be a shared genetic basis between NDDs and cancer, highlighting the importance of considering cancer-targeting drugs with potential curative effects in patients with NDDs.

Key messages

• The contribution of DNMs in NDD is consistent with epidemiological surveys.

• We highlighted 26 CRGs, including nine genes with more than five functional DNMs.

• Specific expression patterns underlie the genetic mechanism of CRGs in NDD.

• Specific functional networks underlie the genetic mechanism of CRGs in NDD.

• The shared genetic aetiology suggests potential mutual treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, Burstein R, Murray CJ, Vos T (2013) Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382(9904):1575–1586

    PubMed  Google Scholar 

  2. Chiang HL, Liu CJ, Hu YW, Chen SC, Hu LY, Shen CC, Yeh CM, Chen TJ, Gau SS (2015) Risk of cancer in children, adolescents, and young adults with autistic disorder. J Pediatr 166(2):418–423 e411

    PubMed  Google Scholar 

  3. Mouridsen SE, Rich B, Isager T (2016) Risk of cancer in adult people diagnosed with infantile autism in childhood: a longitudinal case control study based on hospital discharge diagnoses. Res Autism Spect Dis 23:203–209

    Google Scholar 

  4. Darbro BW, Singh R, Zimmerman MB, Mahajan VB, Bassuk AG (2016) Autism linked to increased oncogene mutations but decreased cancer rate. PLoS One 11(3):e0149041

    PubMed  PubMed Central  Google Scholar 

  5. Alabaf S, Gillberg C, Lundstrom S, Lichtenstein P, Kerekes N, Rastam M, Anckarsater H (2018) Physical health in children with neurodevelopmental disorders. J Autism Dev Disord 49:83–95

    PubMed Central  Google Scholar 

  6. Brosig CL, Bear L, Allen S, Hoffmann RG, Pan A, Frommelt M, Mussatto KA (2017) Preschool neurodevelopmental outcomes in children with congenital heart disease. J Pediatr 183:80–86 e81

    PubMed  PubMed Central  Google Scholar 

  7. Latal B (2016) Neurodevelopmental outcomes of the child with congenital heart disease. Clin Perinatol 43(1):173–185

    PubMed  Google Scholar 

  8. Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J, Jin SC, Deanfield J, Giardini A, Porter GA Jr, Kim R, Bilguvar K, Lopez-Giraldez F, Tikhonova I, Mane S, Romano-Adesman A, Qi H, Vardarajan B, Ma L, Daly M, Roberts AE, Russell MW, Mital S, Newburger JW, Gaynor JW, Breitbart RE, Iossifov I, Ronemus M, Sanders SJ, Kaltman JR, Seidman JG, Brueckner M, Gelb BD, Goldmuntz E, Lifton RP, Seidman CE, Chung WK (2015) De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 350(6265):1262–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mandalenakis Z, Karazisi C, Skoglund K, Rosengren A, Lappas G, Eriksson P, Dellborg M (2019) Risk of cancer among children and young adults with congenital heart disease compared with healthy controls. JAMA Netw Open 2(7):e196762

    PubMed  Google Scholar 

  10. Gurvitz M, Ionescu-Ittu R, Guo L, Eisenberg MJ, Abrahamowicz M, Pilote L, Marelli AJ (2016) Prevalence of cancer in adults with congenital heart disease compared with the general population. Am J Cardiol 118(11):1742–1750

    PubMed  Google Scholar 

  11. Irwin KE, Henderson DC, Knight HP, Pirl WF (2014) Cancer care for individuals with schizophrenia. Cancer 120(3):323–334

    PubMed  Google Scholar 

  12. Lin GM, Chen YJ, Kuo DJ, Jaiteh LE, Wu YC, Lo TS, Li YH (2013) Cancer incidence in patients with schizophrenia or bipolar disorder: a nationwide population-based study in Taiwan, 1997-2009. Schizophr Bull 39(2):407–416

    PubMed  Google Scholar 

  13. Kaae J, Carstensen L, Wohlfahrt J, Melbye M, Allison Boyd H (2014) Epilepsy, anti-epileptic medication use and risk of cancer. Int J Cancer 134(4):932–938

    CAS  PubMed  Google Scholar 

  14. Werling DM, Brand H, An JY, Stone MR, Zhu L, Glessner JT, Collins RL, Dong S, Layer RM, Markenscoff-Papadimitriou E, Farrell A, Schwartz GB, Wang HZ, Currall BB, Zhao X, Dea J, Duhn C, Erdman CA, Gilson MC, Yadav R, Handsaker RE, Kashin S, Klei L, Mandell JD, Nowakowski TJ, Liu Y, Pochareddy S, Smith L, Walker MF, Waterman MJ, He X, Kriegstein AR, Rubenstein JL, Sestan N, McCarroll SA, Neale BM, Coon H, Willsey AJ, Buxbaum JD, Daly MJ, State MW, Quinlan AR, Marth GT, Roeder K, Devlin B, Talkowski ME, Sanders SJ (2018) An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet 50(5):727–736

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Takata A, Miyake N, Tsurusaki Y, Fukai R, Miyatake S, Koshimizu E, Kushima I, Okada T, Morikawa M, Uno Y, Ishizuka K, Nakamura K, Tsujii M, Yoshikawa T, Toyota T, Okamoto N, Hiraki Y, Hashimoto R, Yasuda Y, Saitoh S, Ohashi K, Sakai Y, Ohga S, Hara T, Kato M, Nakamura K, Ito A, Seiwa C, Shirahata E, Osaka H, Matsumoto A, Takeshita S, Tohyama J, Saikusa T, Matsuishi T, Nakamura T, Tsuboi T, Kato T, Suzuki T, Saitsu H, Nakashima M, Mizuguchi T, Tanaka F, Mori N, Ozaki N, Matsumoto N (2018) Integrative analyses of de novo mutations provide deeper biological insights into autism spectrum disorder. Cell Rep 22(3):734–747

    CAS  PubMed  Google Scholar 

  16. Deciphering Developmental Disorders S (2017) Prevalence and architecture of de novo mutations in developmental disorders. Nature 542(7642):433–438

    Google Scholar 

  17. Heyne HO, Singh T, Stamberger H, Abou Jamra R, Caglayan H, Craiu D, De Jonghe P, Guerrini R, Helbig KL, Koeleman BPC, Kosmicki JA, Linnankivi T, May P, Muhle H, Moller RS, Neubauer BA, Palotie A, Pendziwiat M, Striano P, Tang S, Wu S, Euro ERESC, Poduri A, Weber YG, Weckhuysen S, Sisodiya SM, Daly MJ, Helbig I, Lal D, Lemke JR (2018) De novo variants in neurodevelopmental disorders with epilepsy. Nat Genet 50(7):1048–1053

    CAS  PubMed  Google Scholar 

  18. Lelieveld SH, Reijnders MR, Pfundt R, Yntema HG, Kamsteeg EJ, de Vries P, de Vries BB, Willemsen MH, Kleefstra T, Lohner K, Vreeburg M, Stevens SJ, van der Burgt I, Bongers EM, Stegmann AP, Rump P, Rinne T, Nelen MR, Veltman JA, Vissers LE, Brunner HG, Gilissen C (2016) Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci 19(9):1194–1196

    CAS  PubMed  Google Scholar 

  19. Ambalavanan A, Girard SL, Ahn K, Zhou S, Dionne-Laporte A, Spiegelman D, Bourassa CV, Gauthier J, Hamdan FF, Xiong L, Dion PA, Joober R, Rapoport J, Rouleau GA (2016) De novo variants in sporadic cases of childhood onset schizophrenia. Eur J Hum Genet 24(6):944–948

    PubMed  Google Scholar 

  20. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, Georgieva L, Rees E, Palta P, Ruderfer DM, Carrera N, Humphreys I, Johnson JS, Roussos P, Barker DD, Banks E, Milanova V, Grant SG, Hannon E, Rose SA, Chambert K, Mahajan M, Scolnick EM, Moran JL, Kirov G, Palotie A, McCarroll SA, Holmans P, Sklar P, Owen MJ, Purcell SM, O'Donovan MC (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506(7487):179–184

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC, Hung WC, Haider S, Zhang J, Knight J, Bjornson RD, Castaldi C, Tikhonoa IR, Bilguvar K, Mane SM, Sanders SJ, Mital S, Russell MW, Gaynor JW, Deanfield J, Giardini A, Porter GA Jr, Srivastava D, Lo CW, Shen Y, Watkins WS, Yandell M, Yost HJ, Tristani-Firouzi M, Newburger JW, Roberts AE, Kim R, Zhao H, Kaltman JR, Goldmuntz E, Chung WK, Seidman JG, Gelb BD, Seidman CE, Lifton RP, Brueckner M (2017) Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet 49(11):1593–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wright CF, FitzPatrick DR, Firth HV (2018) Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 19(5):253–268

    CAS  PubMed  Google Scholar 

  23. Wang T, Guo H, Xiong B, Stessman HA, Wu H, Coe BP, Turner TN, Liu Y, Zhao W, Hoekzema K, Vives L, Xia L, Tang M, Ou J, Chen B, Shen Y, Xun G, Long M, Lin J, Kronenberg ZN, Peng Y, Bai T, Li H, Ke X, Hu Z, Zhao J, Zou X, Xia K, Eichler EE (2016) De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun 7:13316

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Cai T, Jiang Y, Chen H, He X, Chen C, Li X, Shao Q, Ran X, Li Z, Xia K, Liu C, Sun ZS, Wu J (2016) Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol Psychiatry 21(2):290–297

    PubMed  Google Scholar 

  25. Shohat S, Ben-David E, Shifman S (2017) Varying intolerance of gene pathways to mutational classes explain genetic convergence across neuropsychiatric disorders. Cell Rep 18(9):2217–2227

    CAS  PubMed  Google Scholar 

  26. Howrigan DP, Rose SA, Samocha KE, Fromer M, Cerrato F, Chen WJ, Churchhouse C, Chambert K, Chandler SD, Daly MJ, Dumont A, Genovese G, Hwu HG, Laird N, Kosmicki JA, Moran JL, Roe C, Singh T, Wang SH, Faraone SV, Glatt SJ, McCarroll SA, Tsuang M, Neale BM (2020) Exome sequencing in schizophrenia-affected parent-offspring trios reveals risk conferred by protein-coding de novo mutations. Nat Neurosci 23(2):185–193

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao G, Li K, Li B, Wang Z, Fang Z, Wang X, Zhang Y, Luo T, Zhou Q, Wang L, Xie Y, Wang Y, Chen Q, Xia L, Tang Y, Tang B, Xia K, Li J (2020) Gene4Denovo: an integrated database and analytic platform for de novo mutations in humans. Nucleic Acids Res 48(D1):D913–D926

    CAS  PubMed  Google Scholar 

  28. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

    PubMed  PubMed Central  Google Scholar 

  29. Li J, Shi L, Zhang K, Zhang Y, Hu S, Zhao T, Teng H, Li X, Jiang Y, Ji L, Sun Z (2018) VarCards: an integrated genetic and clinical database for coding variants in the human genome. Nucleic Acids Res 46(D1):D1039–D1048

    CAS  PubMed  Google Scholar 

  30. Li J, Zhao T, Zhang Y, Zhang K, Shi L, Chen Y, Wang X, Sun Z (2018) Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res 46(15):7793–7804

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang N, Lee I, Marcotte EM, Hurles ME (2010) Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 6(10):e1001154

    PubMed  PubMed Central  Google Scholar 

  32. Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB (2013) Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 9(8):e1003709

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lago SG, Tomasik J, van Rees GF, Ramsey JM, Haenisch F, Cooper JD, Broek JA, Suarez-Pinilla P, Ruland T, Auyeug B, Mikova O, Kabacs N, Arolt V, Baron-Cohen S, Crespo-Facorro B, Bahn S (2018) Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Mol Psychiatry 25:2355–2372

    PubMed  Google Scholar 

  34. Crawley JN, Heyer WD, LaSalle JM (2016) Autism and cancer share risk genes, pathways, and drug targets. Trends Genet 32(3):139–146

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoischen A, Krumm N, Eichler EE (2014) Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci 17(6):764–772

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Arafeh R, Samuels Y (2019) PIK3CA in cancer: the past 30 years. Semin Cancer Biol 59:36–49

    CAS  PubMed  Google Scholar 

  37. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MDM, Niu B, McLellan MD, Uzunangelov V, Zhang J, Kandoth C, Akbani R, Shen H, Omberg L, Chu A, Margolin AA, Van't Veer LJ, Lopez-Bigas N, Laird PW, Raphael BJ, Ding L, Robertson AG, Byers LA, Mills GB, Weinstein JN, Van Waes C, Chen Z, Collisson EA, Cancer Genome Atlas Research N, Benz CC, Perou CM, Stuart JM (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158(4):929–944

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Adjiri A (2017) DNA mutations may not be the cause of cancer. Oncol Ther 5(1):85–101

    PubMed  Google Scholar 

  39. Bauer J, Curtin JA, Pinkel D, Bastian BC (2007) Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 127(1):179–182

    CAS  PubMed  Google Scholar 

  40. Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, Miles JH, Wang CH, Stratton R, Pilarski R, Eng C (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 42(4):318–321

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pierpont ME, Magoulas PL, Adi S, Kavamura MI, Neri G, Noonan J, Pierpont EI, Reinker K, Roberts AE, Shankar S, Sullivan J, Wolford M, Conger B, Santa Cruz M, Rauen KA (2014) Cardio-facio-cutaneous syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 134(4):e1149–e1162

    PubMed  PubMed Central  Google Scholar 

  42. Negri G, Milani D, Colapietro P, Forzano F, Della Monica M, Rusconi D, Consonni L, Caffi LG, Finelli P, Scarano G, Magnani C, Selicorni A, Spena S, Larizza L, Gervasini C (2015) Clinical and molecular characterization of Rubinstein-Taybi syndrome patients carrying distinct novel mutations of the EP300 gene. Clin Genet 87(2):148–154

    CAS  PubMed  Google Scholar 

  43. Kuechler A, Willemsen MH, Albrecht B, Bacino CA, Bartholomew DW, van Bokhoven H, van den Boogaard MJ, Bramswig N, Buttner C, Cremer K, Czeschik JC, Engels H, van Gassen K, Graf E, van Haelst M, He W, Hogue JS, Kempers M, Koolen D, Monroe G, de Munnik S, Pastore M, Reis A, Reuter MS, Tegay DH, Veltman J, Visser G, van Hasselt P, Smeets EE, Vissers L, Wieland T, Wissink W, Yntema H, Zink AM, Strom TM, Ludecke HJ, Kleefstra T, Wieczorek D (2015) De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet 134(1):97–109

    CAS  PubMed  Google Scholar 

  44. Korhonen L, Brannvall K, Skoglosa Y, Lindholm D (2003) Tumor suppressor gene BRCA-1 is expressed by embryonic and adult neural stem cells and involved in cell proliferation. J Neurosci Res 71(6):769–776

    CAS  PubMed  Google Scholar 

  45. Bae SM, Hong JY (2018) The Wnt signaling pathway and related therapeutic drugs in autism spectrum disorder. Clin Psychopharmacol Neurosci 16(2):129–135

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dubruc E, Putoux A, Labalme A, Rougeot C, Sanlaville D, Edery P (2014) A new intellectual disability syndrome caused by CTNNB1 haploinsufficiency. Am J Med Genet A 164A(6):1571–1575

    PubMed  Google Scholar 

  47. Wang L, Zhou K, Fu Z, Yu D, Huang H, Zang X, Mo X (2017) Brain development and Akt signaling: the crossroads of signaling pathway and neurodevelopmental diseases. J Mol Neurosci 61(3):379–384

    CAS  PubMed  Google Scholar 

  48. Goffin A, Hoefsloot LH, Bosgoed E, Swillen A, Fryns JP (2001) PTEN mutation in a family with Cowden syndrome and autism. Am J Med Genet 105(6):521–524

    CAS  PubMed  Google Scholar 

  49. Toska E, Osmanbeyoglu HU, Castel P, Chan C, Hendrickson RC, Elkabets M, Dickler MN, Scaltriti M, Leslie CS, Armstrong SA, Baselga J (2017) PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science 355(6331):1324–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu JM, Wang Y, Wang YL, Wang Y, Liu T, Ni M, Li MS, Lin L, Ge FJ, Gong C, Gu JY, Jia R, Wang HF, Chen YL, Liu RR, Zhao CH, Tan ZL, Jin Y, Zhu YP, Ogino S, Qian ZR (2017) PIK3CA mutations contribute to acquired Cetuximab resistance in patients with metastatic colorectal cancer. Clin Cancer Res 23(16):4602–4616

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Madsen RR, Vanhaesebroeck B, Semple RK (2018) Cancer-associated PIK3CA mutations in overgrowth disorders. Trends Mol Med 24(10):856–870

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, Flinn IW, Flowers CR, Martin P, Viardot A, Blum KA, Goy AH, Davies AJ, Zinzani PL, Dreyling M, Johnson D, Miller LL, Holes L, Li D, Dansey RD, Godfrey WR, Salles GA (2014) PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 370(11):1008–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Crunkhorn S (2018) Genetic disorders: PI3K inhibitor reverses overgrowth syndrome. Nat Rev Drug Discov 17(8):545

    CAS  PubMed  Google Scholar 

  54. Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE, Johnston SE, Vrcic A, Wong B, Khan M, Asiedu J, Narayan R, Mader CC, Subramanian A, Golub TR (2017) The drug repurposing hub: a next-generation drug library and information resource. Nat Med 23(4):405–408

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by The National Natural Science Foundation of China [81801133 to Jinchen Li]; Young Elite Scientist Sponsorship Program by CAST [2018QNRC001 to Jinchen Li]; Innovation-Driven Project of Central South University [20180033040004 to Jinchen Li]; The Natural Science Foundation of Hunan Province, China [No 2017JJ3507 to Bin Li]; and Postdoctoral Science Foundation of Xiangya Hospital, Central South University [No 175817 to Bin Li].

Author information

Authors and Affiliations

Authors

Contributions

Study design: Bin Li, Guihu Zhao and Jinchen Li.

Literature search and data collection: Bin Li, Kuokuo Li, Guihu Zhao, Di Tian, Yali Xie, Qiao Zhou and Jinchen Li.

Charting: Bin Li, Qiao Zhou, Yali Xie, Qingtuan Meng and Jinchen Li.

Data analysis: Bin Li, Kuokuo Li, Zhenghuan Fang, Xiaomeng Wang, Tengfei Luo, Yi Zhang and Jinchen Li.

Data interpretation: Bin Li, Zheng Wang, Yijing Wang, Qian Chen, Qingtuan Meng and Jinchen Li.

Writing of the manuscript draft and all revision stages: Bin Li, Kuokuo Li, Guihu Zhao, Di Tian, Qiao Zhou, Yali Xie, Zhenghuan Fang, Xiaomeng Wang, Tengfei Luo, Zheng Wang, Yi Zhang, Yingjing Wang, Qian Chen, Qingtuan Meng and Jinchen Li.

Corresponding authors

Correspondence to Guihu Zhao or Jinchen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, K., Tian, D. et al. De novo mutation of cancer-related genes associates with particular neurodevelopmental disorders. J Mol Med 98, 1701–1712 (2020). https://doi.org/10.1007/s00109-020-01991-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01991-y

Keywords

Navigation