Skip to main content
Log in

Biophysical and pharmacological characterization of a full-length synthetic analog of the antitumor polypeptide crotamine

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Crotamine is a polypeptide isolated from the venom of a South American rattlesnake. Among the properties and biological activities of crotamine, the most extraordinary is its ability to enter cells with unique selective affinity and cytotoxic activity against actively proliferating cells, such as tumor cells. This peptide is also a cargo carrier, and anticipating commercial application of this native polypeptide as a potential theranostic compound against cancer, we performed here a side-by-side characterization of a chemically synthesized full-length crotamine compared with its native counterpart. The structural, biophysical, and pharmacological properties were evaluated. Comparative NMR studies showed structural conservation of synthetic crotamine. Moreover, similarly to native crotamine, the synthetic polypeptide was also capable of inhibiting tumor growth in vivo, increasing the survival of mice bearing subcutaneous tumor. We also confirmed the ability of synthetic crotamine to transfect and transport DNA into eukaryotic cells, in addition to the importance of proteoglycans on cell surface for its internalization. This work opens new opportunities for future evaluation of chimeric and/or point-mutated analogs of this snake polypeptide, aiming for improving crotamine properties and applications, as well as possibly diminishing its potential toxic effects.

Key messages

• Synthetic crotamine showed ex vivo and in vivo activities similar to native peptide.

• Synthetic crotamine structure conservation was demonstrated by NMR analysis.

• Synthetic crotamine is able to transfect and transport DNA into eukaryotic cells.

• Synthetic crotamine shows tumor growth inhibition in vivo.

• Synthetic crotamine increases survival of mice bearing tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

CPPs:

Cell-penetrating peptides

AMP:

Antimicrobial peptide

GMP:

Good manufacturing practice

NMR:

Nuclear magnetic resonance

IP:

Intraperitoneal

SC:

Subcutaneous

Synd-1:

Syndecan 1

WT:

Wild type

KD:

Knockdown

GFP:

Green fluorescent protein

DAPI:

4′,6-Diamidino-2-phenylindole

3D:

Three-dimensional

References

  1. Gonçalves JM (1956) Purification and properties of crotamine. In: Buckley EE, Porges N (eds) Venoms. American Association for the Advancement of Science, Washington, pp 261–273

    Google Scholar 

  2. Nicastro G, Franzoni L, de Chiara C, Mancin AC, Giglio JR, Spisni A (2003) Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durrissus terrificus venom. Eur J Biochem 270(9):1969–1979

    Article  CAS  Google Scholar 

  3. Fadel V, Bettendorff P, Herrmann T, de Azevedo WF Jr, Oliveira EB, Yamane T, Wüthrich K (2005) Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus. Toxicon 46:759–767

    Article  CAS  Google Scholar 

  4. Yamane ES, Bizerra FC, Oliveira EB, Moreira JT, Rajabi M, Nunes GL, de Souza AO, da Silva ID, Yamane T, Karpel RL, Silva PI Jr, Hayashi MA (2013) Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie 95:231–240

    Article  CAS  Google Scholar 

  5. Dal Mas C, Pinheiro DA, Campeiro JD, Mattei B, Oliveira V, Oliveira EB, Miranda A, Perez KR, Hayashi MAF (2017) Biophysical and biological properties of small linear peptides derived from crotamine, a cationic antimicrobial/antitumoral toxin with cell penetrating cargo delivery abilities. Biochim Biophys Acta Biomembr 1859:2340–2349

    Article  CAS  PubMed  Google Scholar 

  6. Schenberg S (1959) Analysis of the crotamine in the individual venom of the rattlesnakes received by the Instituto Butantan. Mem Inst Butantan 29:213–226

    CAS  PubMed  Google Scholar 

  7. Chang CC, Tseng KH (1978) Effect of crotamine, a toxin of South American rattlesnake venom, on the sodium channel of murine skeletal muscle. Br J Pharmacol 63:551–559

    Article  CAS  PubMed  Google Scholar 

  8. Rizzi CT, Carvalho-de-Souza JL, Schiavon E, Cassola AC, Wanke E, Troncone LR (2007) Crotamine inhibits preferentially fast-twitching muscles but is inactive on sodium channels. Toxicon 50:553–562

    Article  CAS  PubMed  Google Scholar 

  9. Yount NY, Kupferwasser D, Spisni A, Dutz SM, Ramjan ZH, Sharma S, Waring AJ, Yeaman MR (2009) Selective reciprocity in antimicrobial activity versus cytotoxicity of HBD-2 and crotamine. Proc Natl Acad Sci U S A 106:14972–14977

    Article  CAS  PubMed  Google Scholar 

  10. Peigneur S, Orts DJ, Prieto da Silva AR, Oguiura N, Boni-Mitake M, de Oliveira EB, Zaharenko AJ, de Freitas JC, Tytgat J (2012) Crotamine pharmacology revisited: novel insights based on the inhibition of KV channels. Mol Pharmacol 82:90–96

    Article  CAS  Google Scholar 

  11. Lima SC, Porta LC, Lima ADC, Campeiro JD, Meurer Y, Teixeira NB, Duarte T, Oliveira EB, Picolo G, Godinho RO, Silva RH, Hayashi MAF (2018) Pharmacological characterization of crotamine effects on mice hind limb paralysis employing both ex vivo and in vivo assays: insights into the involvement of voltage-gated ion channels in the crotamine action on skeletal muscles. PLoS Negl Trop Dis 12(8):e0006700. https://doi.org/10.1371/journal.pntd.0006700

    Article  CAS  PubMed  Google Scholar 

  12. Kerkis A, Kerkis I, Rádis-Baptista G, Oliveira EB, Vianna-Morgante AM, Pereira LV, Yamane T (2004) Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J 18:1407–1409

    Article  CAS  Google Scholar 

  13. Nascimento FD, Hayashi MA, Kerkis A, Oliveira V, Oliveira EB, Rádis-Baptista G, Nader HB, Yamane T, Tersariol IL, Kerkis I (2007) Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. J Biol Chem 282:21349–21460

    Article  CAS  Google Scholar 

  14. Hayashi MAF, Nascimento FD, Kerkis A, Oliveira V, Oliveira EB, Pereira A, Rádis-Baptista G, Nader HB, Yamane T, Kerkis I, Tersariol IL (2008) Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon 52:508–517

    Article  CAS  Google Scholar 

  15. Pereira A, Kerkis A, Hayashi MA, Pereira AS, Silva FS, Oliveira EB, Prieto da Silva AR, Yamane T, Rádis-Baptista G, Kerkis I (2011) Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opin Investig Drugs 20:1189–1200

    Article  CAS  Google Scholar 

  16. Nascimento FD, Sancey L, Pereira A, Rome C, Oliveira V, Oliveira EB, Nader HB, Yamane T, Kerkis I, Tersariol IL, Coll JL, Hayashi MA (2012) The natural cell-penetrating peptide crotamine targets tumor tissue in vivo and triggers a lethal calcium-dependent pathway in cultured cells. Mol Pharm 9:211–221

    Article  CAS  Google Scholar 

  17. Campeiro JD, Marinovic MP, Carapeto FC, Dal Mas C, Monte GG, Carvalho Porta L, Nering MB, Oliveira EB, Hayashi MAF (2018) Oral treatment with rattlesnake native toxin crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids 50:267–278

    Article  CAS  PubMed  Google Scholar 

  18. Mambelli-Lisboa NC, Sciani JM, Brandão Prieto da Silva AR, Kerkis I (2018) Co-localization of crotamine with internal membranes and accentuated accumulation in tumor cells. Molecules 23(4):E968

    Article  PubMed  Google Scholar 

  19. Hayashi MA, Oliveira EB, Kerkis I, Karpel RL (2012) Crotamine: a novel cell-penetrating polypeptide nanocarrier with potential anti-cancer and biotechnological applications. Methods Mol Biol 906:337–352

    CAS  PubMed  Google Scholar 

  20. Campeiro JD, Dam W, Monte GG, Porta LC, Oliveira LCG, Nering MB, Viana GM, Carapeto FC, Oliveira EB, van den Born J, Hayashi MAF (2019) Long term safety of targeted internalization of cell penetrating peptide crotamine into renal proximal tubular epithelial cells in vivo. Sci Rep 9(1):3312

    Article  PubMed  Google Scholar 

  21. Mori MA, Thomou T, Boucher J, Lee KY, Lallukka S, Kim JK, Torriani M, Yki-Järvinen H, Grinspoon SK, Cypess AM, Kahn CR (2014) Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. J Clin Invest 124(8):3339–3351

    Article  CAS  PubMed  Google Scholar 

  22. Marinovic MP, Campeiro JD, Lima SC, Rocha AL, Nering MB, Oliveira EB, Mori MA, Hayashi MAF (2018) Crotamine induces browning of adipose tissue and increases energy expenditure in mice. Sci Rep 8(1):5057

    Article  PubMed  Google Scholar 

  23. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  CAS  PubMed  Google Scholar 

  24. Keller R (2004) The computer aided resonance assignment tutorial. CARA Website. http://cara.nmr-software.org/portal/. Accessed 6 December 2019

  25. Chen PC, Hayashi MA, Oliveira EB, Karpel RL (2012) DNA-interactive properties of crotamine, a cell-penetrating polypeptide and a potential drug carrier. PLoS One 7(11):e48913

    Article  CAS  PubMed  Google Scholar 

  26. Karpel RL, da Silva LM, Campeiro JD, Bergeon L, Szychowski B, Butler A, Marino G, Cusic JF, de Oliveira LCG, Oliveira EB, de Farias MA, Portugal RV, Alves WA, Daniel MC, Hayashi MAF (2018) Design and characterization of crotamine-functionalized gold nanoparticles. Colloids Surf B Biointerfaces 163:1–8

    Article  CAS  PubMed  Google Scholar 

  27. Sheraba NS, Diab MR, Yassin AS, Amin MA, Zedan HH (2019) A validation study of the limulus amebocyte lysate test as an end-product endotoxin test for polyvalent horse snake antivenom. PDA J Pharm Sci Technol 73(6):562–571

    Article  CAS  PubMed  Google Scholar 

  28. Cura JE, Blanzaco DP, Brisson C, Cura MA, Cabrol R, Larrateguy L, Mendez C, Sechi JC, Silveira JS, Theiller E, de Roodt AR, Vidal JC (2002) Phase I and pharmacokinetics study of crotoxin (cytotoxic PLA(2), NSC-624244) in patients with advanced cancer. Clin Cancer Res 8(4):1033–1041

    CAS  PubMed  Google Scholar 

  29. Buommino E, Carotenuto A, Antignano I, Bellavita R, Casciaro B, Loffredo MR, Merlino F, Novellino E, Mangoni ML, Nocera FP, Brancaccio D, Punzi P, Roversi D, Ingenito R, Bianchi E, Grieco P (2019) The outcomes of decorated prolines in the discovery of antimicrobial peptides from temporin-L. Chem Med Chem 14(13):1283–1290

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida K, Kondoh Y, Iwahashi F, Nakano T, Honda K, Nagano E, Osada H (2019) Abscisic acid derivatives with different alkyl chain lengths activate distinct abscisic acid receptor subfamilies. ACS Chem Biol 14(9):1964–1971

    Article  CAS  Google Scholar 

  31. An Y, Chang W, Wang W, Wu H, Pu K, Wu A, Qin Z, Tao Y, Yue Z, Wang P, Wang Z (2020) A novel tetrapeptide fluorescence sensor for early diagnosis of prostate cancer based on imaging Zn2+ in healthy versus cancerous cells. J Adv Res 24:363–370

    Article  CAS  PubMed  Google Scholar 

  32. Sauter M, Strieker M, Kleist C, Wischnjow A, Daniel V, Altmann A, Haberkorn U, Mier W (2020) Improving antibody-based therapies by chemical engineering of antibodies with multimeric cell-penetrating peptides for elevated intracellular delivery. J Control Release 322:200–208

    Article  CAS  Google Scholar 

  33. Qiao Z, He M, He MU, Li W, Wang X, Wang Y, Kuai Q, Li C, Ren S, Yu Q (2016) Synergistic antitumor activity of gemcitabine combined with triptolide in pancreatic cancer cells. Oncol Lett 11(5):3527–3533

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Zhang S, Zhang J, Hu Z, Xiao Y, Huang J, Dong C, Huang S, Zhou HB (2019) Exploring the PROTAC degron candidates: OBHSA with different side chains as novel selective estrogen receptor degraders (SERDs). Eur J Med Chem 172:48–61

    Article  CAS  Google Scholar 

  35. Wang S, Dong G, Sheng C (2019) Structural simplification: an efficient strategy in lead optimization. Acta Pharm Sin B 9(5):880–901

    Article  PubMed  Google Scholar 

  36. Ponnappan N, Budagavi DP, Chugh A (2017) CyLoP-1: membrane-active peptide with cell-penetrating and antimicrobial properties. Biochim Biophys Acta Biomembr 1859(2):167–176

    Article  CAS  Google Scholar 

  37. Mathew B, Nagaraj R (2015) Antimicrobial activity of human α-defensin 6 analogs: insights into the physico-chemical reasons behind weak bactericidal activity of HD6 in vitro. J Pept Sci 21(11):811–818

    Article  CAS  Google Scholar 

  38. Hayashi MAF, Campeiro JD, Porta LC, Szychowski B, Alves WA, Oliveira EB, Kerkis I, Daniel MC, Karpel RL (2020) Crotamine cell-penetrating nanocarriers: cancer-targeting and potential biotechnological and/or medical applications. Methods Mol Biol 2118:61–89

    Article  Google Scholar 

  39. Hernandez-Oliveira e Silva S, Rostelato-Ferreira S, Rocha-e-Silva TA, Randazzo-Moura P, Dal-Belo CA, Sanchez EF, Borja-Oliveira CR, Rodrigues-Simioni L (2013) Beneficial effect of crotamine in the treatment of myasthenic rats. Muscle Nerve 47(4):591–593

    Article  CAS  PubMed  Google Scholar 

  40. Svenson J, Stensen W, Brandsdal BO, Haug BE, Monrad J, Svendsen JS (2008) Antimicrobial peptides with stability toward tryptic degradation. Biochemistry 47(12):3777–3788

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the technical assistance of Marcela B. Nering and for the administrative assistance of Rosemary Oliveira.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil) (Grant Numbers: 2014/50891-1, 2017/02413-1, 2018/20014-0, and 2018/21381-6) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, Brazil) (Grant Numbers: 454234/2014-7, 455953/2014-7, 309428/2015-7). This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001. The authors acknowledge the Brazilian Biosciences National Laboratory (LNBio) for the NMR time under proposal RMN-9586.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, LCP and MAFH; formal analysis, LCP, VF, and JDC; investigation, LCP, VF, and JDC; resources, EBO, ROG, and MAFH; writing - original draft, LCP and MAFH; writing - review and editing, VF, ROG, and MAFH; visualization, LCP; supervision, MAFH; project administration, MAFH; funding acquisition, MAFH.

Corresponding author

Correspondence to Mirian Akemi Furuie Hayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This project was approved by the Animal Use and Ethic Committee (CEUA) of the UNIFESP/EPM (approval number: 7615290118).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Porta, L., Fadel, V., D’Arc Campeiro, J. et al. Biophysical and pharmacological characterization of a full-length synthetic analog of the antitumor polypeptide crotamine. J Mol Med 98, 1561–1571 (2020). https://doi.org/10.1007/s00109-020-01975-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01975-y

Keywords

Navigation