Skip to main content
Log in

Targeting TJP1 attenuates cell–cell aggregation and modulates chemosensitivity against doxorubicin in leiomyosarcoma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Tight junction protein 1 (TJP1) is a membrane-associated cytosolic protein important for cell–cell communication in intercellular barriers in epithelial and non-epithelial cells. Here, we explored the functional involvement of TJP1 in non-epithelial tumors such as soft tissue sarcoma, especially in leiomyosarcoma (LMS). TJP1 expression in soft tissue sarcoma was analyzed in normal and tumor tissues as well as from public datasets such as the TCGA provisional dataset, in which TJP1 expression was compared with other subtypes such as undifferentiated sarcomas, and myxofibrosarcomas. SK-LMS-1 cell lines with reduced TJP1 expression showed attenuated anchorage-independent colony formation as well as reduced intercellular aggregation on non-coated culture plates compared with control as well as parental SK-LMS-1 cells. Transcriptome profiling following TJP1 knockdown in SK-LMS-1 cells suggested the involvement of several signaling pathways, including NF-κB pathway and growth factor receptor signaling. In addition, TJP1 downregulation induced enhanced response against anti-cancer agents, doxorubicin and gefitinib. Taken together, these results suggest that TJP1 contributes to sarcoma genesis and might be useful therapeutic target.

Key messages

• TJP1 expression at RNA level higher in tumor than in normal tissues of sarcoma.

• Targeting TJP1 attenuates cell–cell aggregation and anchorage-independent growth.

• Targeting TJP1 is beneficial in anti-cancer therapy in LMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matushansky I, Maki RG (2005) Mechanisms of sarcomagenesis. Hematol Oncol Clin North Am 19:427–449

    Article  PubMed  Google Scholar 

  2. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A et al (2010) Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 42:715–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cancer Genome Atlas Research Network. Electronic address edsc, Cancer Genome Atlas Research N (2017) Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 171: 950–965 e928. DOI https://doi.org/10.1016/j.cell.2017.10.014, 950, 965.e28

  4. Kim J, Kim JH, Kang HG, Park SY, Yu JY, Lee EY, Oh SE, Kim YH, Yun T, Park C, Cho SY, You HJ (2018) Integrated molecular characterization of adult soft tissue sarcoma for therapeutic targets. BMC Med Genet 19:216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chibon F, Lagarde P, Salas S, Perot G, Brouste V, Tirode F, Lucchesi C, de Reynies A, Kauffmann A, Bui B et al (2010) Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med 16:781–787

    Article  CAS  PubMed  Google Scholar 

  6. Howlader N., Noone A. M., Krapcho M., Miller D., Bishop K., Kosary C. L., Yu M., Ruhl J., Tatalovich Z., Mariotto A., et al. (2017) SEER Cancer Statistics Review, 1975-2014National Cancer Institute, Bethesda

  7. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    Article  CAS  PubMed  Google Scholar 

  8. Coindre JM, Terrier P, Guillou L, Le Doussal V, Collin F, Ranchere D, Sastre X, Vilain MO, Bonichon F, N'Guyen Bui B (2001) Predictive value of grade for metastasis development in the main histologic types of adult soft tissue sarcomas: a study of 1240 patients from the French Federation of Cancer Centers Sarcoma Group. Cancer 91:1914–1926

    Article  CAS  PubMed  Google Scholar 

  9. Chudasama P, Mughal SS, Sanders MA, Hubschmann D, Chung I, Deeg KI, Wong SH, Rabe S, Hlevnjak M, Zapatka M et al (2018) Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat Commun 9:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sharma S, Takyar S, Manson SC, Powell S, Penel N (2013) Efficacy and safety of pharmacological interventions in second- or later-line treatment of patients with advanced soft tissue sarcoma: a systematic review. BMC Cancer 13:385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Taylor BS, Barretina J, Maki RG, Antonescu CR, Singer S, Ladanyi M (2011) Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer 11:541–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Judson I, Verweij J, Gelderblom H, Hartmann JT, Schoffski P, Blay JY, Kerst JM, Sufliarsky J, Whelan J, Hohenberger P et al (2014) Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol 15:415–423

    Article  CAS  PubMed  Google Scholar 

  13. Mouridsen HT, Bastholt L, Somers R, Santoro A, Bramwell V, Mulder JH, van Oosterom AT, Buesa J, Pinedo HM, Thomas D, Sylvester R (1987) Adriamycin versus epirubicin in advanced soft tissue sarcomas. A randomized phase II/phase III study of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer Clin Oncol 23:1477–1483

    Article  CAS  PubMed  Google Scholar 

  14. In GK, Hu JS, Tseng WW (2017) Treatment of advanced, metastatic soft tissue sarcoma: latest evidence and clinical considerations. Ther Adv Med Oncol 9:533–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barone A, Chi DC, Theoret MR, Chen H, He K, Kufrin D, Helms WS, Subramaniam S, Zhao H, Patel A, Goldberg KB, Keegan P, Pazdur R (2017) FDA approval summary: trabectedin for unresectable or metastatic Liposarcoma or leiomyosarcoma following an anthracycline-containing regimen. Clin Cancer Res 23:7448–7453

    Article  CAS  PubMed  Google Scholar 

  16. Demetri GD, von Mehren M, Jones RL, Hensley ML, Schuetze SM, Staddon A, Milhem M, Elias A, Ganjoo K, Tawbi H, van Tine BA, Spira A, Dean A, Khokhar NZ, Park YC, Knoblauch RE, Parekh TV, Maki RG, Patel SR (2016) Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: results of a phase III randomized multicenter clinical trial. J Clin Oncol 34:786–793

    Article  CAS  PubMed  Google Scholar 

  17. Patel S, von Mehren M, Reed DR, Kaiser P, Charlson J, Ryan CW, Rushing D, Livingston M, Singh A, Seth R, Forscher C, D'Amato G, Chawla SP, McCarthy S, Wang G, Parekh T, Knoblauch R, Hensley ML, Maki RG, Demetri GD (2019) Overall survival and histology-specific subgroup analyses from a phase 3, randomized controlled study of trabectedin or dacarbazine in patients with advanced liposarcoma or leiomyosarcoma. Cancer 125:2610–2620

    Article  CAS  PubMed  Google Scholar 

  18. Blay JY, Schoffski P, Bauer S, Krarup-Hansen A, Benson C, D'Adamo DR, Jia Y, Maki RG (2019) Eribulin versus dacarbazine in patients with leiomyosarcoma: subgroup analysis from a phase 3, open-label, randomised study. Br J Cancer 120:1026–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, Schoffski P, Aglietta M, Staddon AP, Beppu Y et al (2012) Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379:1879–1886

    Article  PubMed  CAS  Google Scholar 

  20. Chen HW, Chen TW (2020) Genomic-guided precision therapy for soft tissue sarcoma. ESMO Open 5:5

    Article  Google Scholar 

  21. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, Hammerman P, Freeman GJ, Wu CJ, Ott PA, Wong KK, van Allen EM (2017) Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salvador E, Burek M, Forster CY (2016) Tight junctions and the tumor microenvironment. Curr Pathobiol Rep 4:135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer HC (2010) The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010:402593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Howarth AG, Hughes MR, Stevenson BR (1992) Detection of the tight junction-associated protein ZO-1 in astrocytes and other nonepithelial cell types. Am J Phys 262:C461–C469

    Article  CAS  Google Scholar 

  26. Van Itallie CM, Aponte A, Tietgens AJ, Gucek M, Fredriksson K, Anderson JM (2013) The N and C termini of ZO-1 are surrounded by distinct proteins and functional protein networks. J Biol Chem 288:13775–13788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lesage J, Suarez-Carmona M, Neyrinck-Leglantier D, Grelet S, Blacher S, Hunziker W, Birembaut P, Noel A, Nawrocki-Raby B, Gilles C et al (2017) Zonula occludens-1/NF-kappaB/CXCL8: a new regulatory axis for tumor angiogenesis. FASEB J 31:1678–1688

    Article  CAS  PubMed  Google Scholar 

  28. Zhang XD, Baladandayuthapani V, Lin H, Mulligan G, Li B, Esseltine DW, Qi L, Xu J, Hunziker W, Barlogie B et al (2016) Tight junction protein 1 modulates proteasome capacity and proteasome inhibitor sensitivity in multiple myeloma via EGFR/JAK1/STAT3 signaling. Cancer Cell 29:639–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Riz I, Hawley RG (2017) Increased expression of the tight junction protein TJP1/ZO-1 is associated with upregulation of TAZ-TEAD activity and an adult tissue stem cell signature in carfilzomib-resistant multiple myeloma cells and high-risk multiple myeloma patients. Oncoscience 4:79–94

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dodd RD, Mito JK, Kirsch DG (2010) Animal models of soft-tissue sarcoma. Dis Model Mech 3:557–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayashi T, Faustman DL (2002) Development of spontaneous uterine tumors in low molecular mass polypeptide-2 knockout mice. Cancer Res 62:24–27

    CAS  PubMed  Google Scholar 

  32. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    Article  PubMed  Google Scholar 

  34. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paek AR, Lee CH, You HJ (2014) A role of zinc-finger protein 143 for cancer cell migration and invasion through ZEB1 and E-cadherin in colon cancer cells. Mol Carcinog 53(Suppl 1):E161–E168

    Article  CAS  PubMed  Google Scholar 

  36. Verma V, Paek AR, Choi BK, Hong EK, You HJ (2019) Loss of zinc-finger protein 143 contributes to tumour progression by interleukin-8-CXCR axis in colon cancer. J Cell Mol Med 23:4043–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  38. Paek AR, Mun JY, Hong KM, Lee J, Hong DW, You HJ (2017) Zinc finger protein 143 expression is closely related to tumor malignancy via regulating cell motility in breast cancer. BMB Rep 50:621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Itallie CM, Tietgens AJ, Krystofiak E, Kachar B, Anderson JM (2015) A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction. Mol Biol Cell 26:2769–2787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brandner JM, Kief S, Grund C, Rendl M, Houdek P, Kuhn C, Tschachler E, Franke WW, Moll I (2002) Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol 81:253–263

    Article  CAS  PubMed  Google Scholar 

  42. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47:W191–W198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dangoor A, Seddon B, Gerrand C, Grimer R, Whelan J, Judson I (2016) UK guidelines for the management of soft tissue sarcomas. Clin Sarcoma Res 6:20

    Article  PubMed  PubMed Central  Google Scholar 

  44. Demetri GD, Le Cesne A, Chawla SP, Brodowicz T, Maki RG, Bach BA, Smethurst DP, Bray S, Hei YJ, Blay JY (2012) First-line treatment of metastatic or locally advanced unresectable soft tissue sarcomas with conatumumab in combination with doxorubicin or doxorubicin alone: a phase I/II open-label and double-blind study. Eur J Cancer 48:547–563

    Article  CAS  PubMed  Google Scholar 

  45. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, Gibson KH (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62:5749–5754

    CAS  PubMed  Google Scholar 

  46. Hirsch FR, Sequist LV, Gore I, Mooradian M, Simon G, Croft EF, DeVincenzo D, Munley J, Stein D, Freivogel K, Sifakis F, Bunn PA Jr (2018) Long-term safety and survival with gefitinib in select patients with advanced non-small cell lung cancer: results from the US IRESSA Clinical Access Program (ICAP). Cancer 124:2407–2414

    Article  CAS  PubMed  Google Scholar 

  47. Ray-Coquard I, Le Cesne A, Whelan JS, Schoffski P, Bui BN, Verweij J, Marreaud S, van Glabbeke M, Hogendoorn P, Blay JY (2008) A phase II study of gefitinib for patients with advanced HER-1 expressing synovial sarcoma refractory to doxorubicin-containing regimens. Oncologist 13:467–473

    Article  CAS  PubMed  Google Scholar 

  48. Verma N, Rai AK, Kaushik V, Brunnert D, Chahar KR, Pandey J, Goyal P (2016) Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining. Sci Rep 6:33949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee SH, Paek AR, Yoon K, Kim SH, Lee SY, You HJ (2015) Tight junction protein 1 is regulated by transforming growth factor-beta and contributes to cell motility in NSCLC cells. BMB Rep 48:115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saias L, Gomes A, Cazales M, Ducommun B, Lobjois V (2015) Cell-cell adhesion and cytoskeleton tension oppose each other in regulating tumor cell aggregation. Cancer Res 75:2426–2433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mi Ae Kim of the Microscopy Core (National Cancer Center), Tae Sik Kim of the FACS core (National Cancer Center), and Mi Sun Park of Animal Laboratory (National Cancer Center) for their expert assistance and helpful suggestions. Also, we thank the NCC sarcoma research group (National Cancer Center) for their advice as well as assistance in managing information, and sampling process.

Funding

This work was supported in part by National Cancer Center Grant NCC-1710252, NCC-1810865 (to HJYOU) and National Research Foundation of Korea Grant funded by the Korea Government (MSIP, South Korea) (No. 2019R1H1A2039666, to HJYOU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Jin You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

The study was vetted by the Ethics Review Board of the National Cancer Center, Korea (IRB No.: NCC2017-0062). The study was performed according to the principles of the Declaration of Helsinki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 101 kb)

ESM 2

(PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, EY., Yu, J.Y., Paek, A.R. et al. Targeting TJP1 attenuates cell–cell aggregation and modulates chemosensitivity against doxorubicin in leiomyosarcoma. J Mol Med 98, 761–773 (2020). https://doi.org/10.1007/s00109-020-01909-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01909-8

Keywords

Navigation