Skip to main content
Log in

Expression of long pentraxin 3 in human nasal mucosa fibroblasts, tissues, and secretions of chronic rhinosinusitis without nasal polyps

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Numerous studies have shown that microbiomes play an important role in the pathogenesis of chronic rhinosinusitis (CRS). In addition to a known short pentraxin, C-reactive protein, long pentraxin 3 (PTX3) belongs to pentraxin family which detects conserved microbial pentraxin motifs and mobilizes early defense against foreign invaders, but its participation in CRS remains unclear. In the present study, through an intensive screening, peptidoglycan (PGN) was selected as a main material to investigate the action mechanism of a cell wall component on CRS without nasal polyps (CRSsNP) nasal mucosa-derived fibroblasts and the PTX3 expression in human nasal mucosa tissue and discharge. The PGN not only enhanced PTX3 mRNA and protein production in cells but also caused marked PTX3 secretion into extracellular space. The pharmacological interventions indicated that the PTX3 induction was mediated mainly through toll-like receptor 2 (TLR2), phosphoinositide-phospholipase C (PI-PLC), protein kinase C (PKC), NF-κB, and cAMP response element binding protein (CREB), which was further confirmed by the observations that a direct PKC activator (phorbol ester) had a similar inductory effect on PTX3 expression/production and the siRNA interference knockdown of PKCμ/δ, NF-κB, and CREB compromised PTX3 production. Meanwhile, PTX3 was found to be overexpressed/produced in nasal mucosa and discharge/secretion of the CRSsNP patients. Collectively, we first demonstrated here that PGN enhances PTX3 expression and release in nasal fibroblasts through TLR2, PI-PLC, PKCμ/δ, NF-κB, and CREB signaling pathways. The PTX3 is overexpressed in nasal mucosa and discharge/secretion of CRSsNP patients, revealing its possible importance in CRSsNP development and progression.

Key messages

  • Long pentraxin 3 (PTX3) is highly expressed in nasal mucosa and discharge/secretion of patients of chronic rhinosinusitis without nasal polyps (CRSsNP).

  • The bacteria cell wall component-peptidoglycan (PGN) causes PTX3 expression in CRSsNP nasal mucosa-derived fibroblasts, contributing to the PTX3 increase in tissues.

  • PGN induces PTX3 expression through a previously known IκB/NF-κB and a novel PKCμ/δ and CREB signaling pathway.

  • The PTX3 may be used as a biomarker for CRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CREB:

cAMP response element binding protein

CRSsNP:

Chronic rhinosinusitis without nasal polyps

CRSwNP:

Chronic rhinosinusitis with nasal polyps

PI-PLC:

Phosphoinositide-phospholipase C

PKC:

Protein kinase C

PTX3:

Pentraxin 3

PGN:

Peptidoglycan

TLR :

Toll-like receptor

hNMDFs:

Human nasal mucosa-derived fibroblasts

References

  1. Pleis JR, Ward BW, Lucas JW (2010) Summary health statistics for U.S. adults: National Health Interview Survey, 2009. Vital Health Stat 10:1–207

    Google Scholar 

  2. Hamilos DL (2011) Chronic rhinosinusitis: epidemiology and medical management. J Allergy Clin Immunol 128:693–707

    PubMed  Google Scholar 

  3. Tomassen P, Van Zele T, Zhang N, Perez-Novo C, Van Bruaene N, Gevaert P, Bachert C (2011) Pathophysiology of chronic rhinosinusitis. Proc Am Thorac Soc 8:115–120

    CAS  PubMed  Google Scholar 

  4. Van Crombruggen K, Zhang N, Gevaert P, Tomassen P, Bachert C (2011) Pathogenesis of chronic rhinosinusitis: inflammation. J Allergy Clin Immunol 128:728–732

    PubMed  Google Scholar 

  5. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, Cohen N, Cervin A, Douglas R, Gevaert P et al (2012) European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl 3 p preceding table of contents:1–298

    Google Scholar 

  6. Wood AJ, Douglas RG (2010) Pathogenesis and treatment of chronic rhinosinusitis. Postgrad Med J 86:359–364

    CAS  PubMed  Google Scholar 

  7. Niederfuhr A, Kirsche H, Riechelmann H, Wellinghausen N (2009) The bacteriology of chronic rhinosinusitis with and without nasal polyps. Arch Otolaryngol Head Neck Surg 135:131–136

    PubMed  Google Scholar 

  8. Wertheim HFL, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762

    PubMed  Google Scholar 

  9. Lee JT, Frank DN, Ramakrishnan V (2016) Microbiome of the paranasal sinuses: update and literature review. Am J Rhinol Allergy 30:3–16

    PubMed  PubMed Central  Google Scholar 

  10. Su W, Jiang Y (2015) Bacterial culture analysis for patients with chronic rhinosinusitis with or without polyps. Zhong Nan Da Xue Xue Bao Yi Xue Ban 40:1253–1257

    PubMed  Google Scholar 

  11. Lee CW, Chung SW, Bae MJ, Song S, Kim SP, Kim K (2015) Peptidoglycan up-regulates CXCL8 expression via multiple pathways in monocytes/macrophages. Biomol Ther 23:564–570

    CAS  Google Scholar 

  12. Lee SA, Kim SM, Son YH, Lee CW, Chung SW, Eo SK, Rhim BY, Kim K (2011) Peptidoglycan enhances secretion of monocyte chemoattractants via multiple signaling pathways. Biochem Biophys Res Commun 408:132–138

    CAS  PubMed  Google Scholar 

  13. Yamamoto K, Kawamura I, Ito J, Mitsuyama M (2006) Modification of allergic inflammation in murine model of rhinitis by different bacterial ligands: involvement of mast cells and dendritic cells. Clin Exp Allergy 36:760–769

    CAS  PubMed  Google Scholar 

  14. Tsai Y-J, Chi JC-Y, Hao C-Y, Wu W-B (2018) Peptidoglycan induces bradykinin receptor 1 expression through toll-like receptor 2 and NF-κB signaling pathway in human nasal mucosa-derived fibroblasts of chronic rhinosinusitis patients. J Cell Physiol 233:7226–7238

    CAS  PubMed  Google Scholar 

  15. Mantovani A, Valentino S, Gentile S, Inforzato A, Bottazzi B, Garlanda C (2013) The long pentraxin PTX3: a paradigm for humoral pattern recognition molecules. Ann N Y Acad Sci 1285:1–14

    CAS  PubMed  Google Scholar 

  16. Daigo K, Mantovani A, Bottazzi B (2014) The yin-yang of long pentraxin PTX3 in inflammation and immunity. Immunol Lett 161:38–43

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Doni A, Musso T, Morone D, Bastone A, Zambelli V, Sironi M, Castagnoli C, Cambieri I, Stravalaci M, Pasqualini F, Laface I, Valentino S, Tartari S, Ponzetta A, Maina V, Barbieri SS, Tremoli E, Catapano AL, Norata GD, Bottazzi B, Garlanda C, Mantovani A (2015) An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. J Exp Med 212:905–925

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rua R, McGavern DB (2015) Pentraxin 3 innately preps damaged tissue for wound healing. J Exp Med 212:829–829

    PubMed  PubMed Central  Google Scholar 

  19. Bonavita E, Gentile S, Rubino M, Maina V, Papait R, Kunderfranco P, Greco C, Feruglio F, Molgora M, Laface I, Tartari S, Doni A, Pasqualini F, Barbati E, Basso G, Galdiero MR, Nebuloni M, Roncalli M, Colombo P, Laghi L, Lambris JD, Jaillon S, Garlanda C, Mantovani A (2015) PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell 160:700–714

    CAS  PubMed  Google Scholar 

  20. Maina V, Cotena A, Doni A, Nebuloni M, Pasqualini F, Milner CM, Day AJ, Mantovani A, Garlanda C (2009) Coregulation in human leukocytes of the long pentraxin PTX3 and TSG-6. J Leukoc Biol 86:123–132

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Inforzato A, Baldock C, Jowitt TA, Holmes DF, Lindstedt R, Marcellini M, Rivieccio V, Briggs DC, Kadler KE, Verdoliva A, Bottazzi B, Mantovani A, Salvatori G, Day AJ (2010) The angiogenic inhibitor long pentraxin PTX3 forms an asymmetric octamer with two binding sites for FGF2. J Biol Chem 285:17681–17692

    CAS  PubMed  PubMed Central  Google Scholar 

  22. He X, Han B, Liu M (2007) Long pentraxin 3 in pulmonary infection and acute lung injury. Am J Phys Lung Cell Mol Phys 292:L1039–L1049

    CAS  Google Scholar 

  23. Yildirim YS, Apuhan T, Kocoglu E, Simsek T, Kazaz H (2011) High sensitivity C-reactive protein levels in chronic rhinosinusitis and allergic rhinitis. Kulak Burun Bogaz Ihtis Derg 21:266–269

    PubMed  Google Scholar 

  24. Kim HS, Won S, Lee EK, Chun YH, Yoon J-S, Kim HH, Kim JT (2016) Pentraxin 3 as a clinical marker in children with lower respiratory tract infection. Pediatr Pulmonol 51:42–48

    PubMed  Google Scholar 

  25. Tsai YJ, Hao SP, Chen CL, Lin BJ, Wu WB (2015) Involvement of B2 receptor in bradykinin-induced proliferation and proinflammatory effects in human nasal mucosa-derived fibroblasts isolated from chronic rhinosinusitis patients. PLoS One 10:e0126853

    PubMed  PubMed Central  Google Scholar 

  26. Lai T-H, Shieh J-M, Tsou C-J, Wu W-B (2015) Gold nanoparticles induce heme oxygenase-1 expression through Nrf2 activation and Bach1 export in human vascular endothelial cells. Int J Nanomedicine 10:5925–5939

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang S, Zhu Y-T, Chen S-Y, He H, Tseng SCG (2014) Constitutive expression of pentraxin 3 (PTX3) protein by human amniotic membrane cells leads to formation of the heavy chain (HC)-hyaluronan (HA)-PTX3 complex. J Biol Chem 289:13531–13542

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsu J, Peters AT (2011) Pathophysiology of chronic rhinosinusitis with nasal polyp. Am J Rhinol Allergy 25:285–290

    PubMed  Google Scholar 

  29. Morrison DC, Jacobs DM (1976) Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13:813–818

    CAS  PubMed  Google Scholar 

  30. Murthy KS, Makhlouf GM (1995) Agonist-mediated activation of phosphatidylcholine-specific phospholipase C and D in intestinal smooth muscle. Mol Pharmacol 48:293–304

    CAS  PubMed  Google Scholar 

  31. Wu-Zhang AX, Newton AC (2013) Protein kinase C pharmacology: refining the toolbox. Biochem J 452:195–209

    CAS  PubMed  Google Scholar 

  32. Ho J, Hamizan AW, Alvarado R, Rimmer J, Sewell WA, Harvey RJ (2018) Systemic predictors of eosinophilic chronic rhinosinusitis. Am J Rhinol Allergy 32:252–257

    PubMed  Google Scholar 

  33. Vetter SW (2015) Chapter Five - Glycated serum albumin and AGE receptors. In: Makowski GS (ed) Advances in clinical chemistry. Elsevier, pp 205–275

  34. Kouzaki H, Seno S, Fukui J, Owaki S, Shimizu T (2009) Role of platelet-derived growth factor in airway remodeling in rhinosinusitis. Am J Rhinol Allergy 23:273–280

    PubMed  Google Scholar 

  35. Sansoni ER, Sautter NB, Mace JC, Smith TL, Yawn JR, Lawrence LA, Schlosser RJ, Soler ZM, Mulligan JK (2015) Vitamin D3 as a novel regulator of basic fibroblast growth factor in chronic rhinosinusitis with nasal polyposis. Int Forum Allergy Rhinol 5:191–196

    PubMed  PubMed Central  Google Scholar 

  36. Li Y, Li L, Wang T, Zang H, An Y, Li L, Zhang J, Wang F, Zheng Y (2014) Analysis of epidermal growth factor signaling in nasal mucosa epithelial cell proliferation involved in chronic rhinosinusitis. Chin Med J 127:3449–3453

    PubMed  Google Scholar 

  37. Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P (2010) Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 13:1051–1085

    CAS  PubMed  Google Scholar 

  38. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    CAS  PubMed  Google Scholar 

  39. Tzeng J-I, Chen B-C, Chang H-M, Wang J-J, Sureshbabu M, Chien M-H, Hsu M-J, Bien M-Y, Chiu W-T, Hong C-Y, Lin CH (2010) Involvement of phosphatidylcholine-phospholipase C and protein kinase C in peptidoglycan-induced nuclear factor-κB activation and cyclooxygenase-2 expression in RAW 264.7 macrophages. Pharmacol Res 61:162–166

    CAS  PubMed  Google Scholar 

  40. Lane AP, Truong-Tran QA, Myers A, Bickel C, Schleimer RP (2006) Serum amyloid A, properdin, complement 3, and toll-like receptors are expressed locally in human sinonasal tissue. Am J Rhinol 20:117–123

    PubMed  PubMed Central  Google Scholar 

  41. Sun Y, Zhou B, Wang C, Huang Q, Zhang Q, Han Y, Dai W, Fan E, Li Y (2012) Biofilm formation and toll-like receptor 2, toll-like receptor 4, and NF-kappaB expression in sinus tissues of patients with chronic rhinosinusitis. Am J Rhinol Allergy 26:104–109

    CAS  PubMed  Google Scholar 

  42. Chiu YC, Lin CY, Chen CP, Huang KC, Tong KM, Tzeng CY, Lee TS, Hsu HC, Tang CH (2009) Peptidoglycan enhances IL-6 production in human synovial fibroblasts via TLR2 receptor, focal adhesion kinase, Akt, and AP-1- dependent pathway. J Immunol 183:2785–2792

    CAS  PubMed  Google Scholar 

  43. Lin HY, Tang CH, Chen JH, Chuang JY, Huang SM, Tan TW, Lai CH, Lu DY (2011) Peptidoglycan induces interleukin-6 expression through the TLR2 receptor, JNK, c-Jun, and AP-1 pathways in microglia. J Cell Physiol 226:1573–1582

    CAS  PubMed  Google Scholar 

  44. Chen B-C, Chang H-M, Hsu M-J, Shih C-M, Chiu Y-H, Chiu W-T, Lin C-H (2009) Peptidoglycan induces cyclooxygenase-2 expression in macrophages by activating the neutral sphingomyelinase-ceramide pathway. J Biol Chem 284:20562–20573

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen B-C, Kang J-C, Lu Y-T, Hsu M-J, Liao C-C, Chiu W-T, Yeh F-L, Lin C-H (2009) Rac1 regulates peptidoglycan-induced nuclear factor-κB activation and cyclooxygenase-2 expression in RAW 264.7 macrophages by activating the phosphatidylinositol 3-kinase/Akt pathway. Mol Immunol 46:1179–1188

    CAS  PubMed  Google Scholar 

  46. Proud D, Togias A, Naclerio RM, Crush SA, Norman PS, Lichtenstein LM (1983) Kinins are generated in vivo following nasal airway challenge of allergic individuals with allergen. J Clin Invest 72:1678–1685

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Eddleston J, Christiansen SC, Jenkins GR, Koziol JA, Zuraw BL (2003) Bradykinin increases the in vivo expression of the CXC chemokine receptors CXCR1 and CXCR2 in patients with allergic rhinitis. J Allergy Clin Immunol 111:106–112

    CAS  PubMed  Google Scholar 

  48. Du Clos TW (2013) Pentraxins: structure, function, and role in inflammation. ISRN Inflamm 2013:379040–379040

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grant from Ministry of Science and Technology in Taiwan (MOST 105-2320-B-030-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Wu.

Ethics declarations

This study was approved by the Ethics Committee of the Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, and conducted with the written informed consent of the patients.

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 174 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, YJ., Hao, CY., Chen, CL. et al. Expression of long pentraxin 3 in human nasal mucosa fibroblasts, tissues, and secretions of chronic rhinosinusitis without nasal polyps. J Mol Med 98, 673–689 (2020). https://doi.org/10.1007/s00109-020-01899-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01899-7

Keywords

Navigation