Skip to main content
Log in

A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Necrosis with inflammation plays a crucial role in acute respiratory distress syndrome (ARDS). Receptor-interacting protein 3 (RIPK3) regulates a newly discovered programmed form of necrosis called necroptosis. However, the underlying mechanism of necroptosis in ARDS remains unknown. Thus, the purpose of this study was to examine the possible involvement of RIPK3 in ARDS-associated necroptosis. RIPK3 protein levels were found to be significantly elevated in the plasma and bronchoalveolar lavage fluid of ARDS patients. Next, we utilised a mouse model of severe ARDS induced with high-dose lipopolysaccharide and found that lung injury was mainly due to RIPK3-mixed lineage kinase domain-like pseudokinase (MLKL)-mediated necroptosis and endothelial dysfunction. The activation of RIPK3-MLKL by tumour necrosis factor receptor 1 (TNFR1) and TNFR1-associated death domain protein (TRADD) required catalytically active RIPK1 and the inhibition of Fas-associated protein with death domain (FADD)/caspase-8 catalytic activity. We further showed that the molecular chaperone heat shock protein 90 (Hsp90)/p23, as a novel RIPK3- and MLKL-interacting complex, played an important role in RIP-MLKL-mediated necroptosis, inflammation and endothelial dysfunction in the pulmonary vasculature, which resulted in ARDS. Collectively, the results of our study indicate that necroptosis is an important mechanism of cell death in ARDS and the inhibition of necroptosis may be a therapeutic intervention for ARDS.

Key messages

  • Lung injury in high-dose LPS-induced severe ARDS is mainly due to RIP3-MLKL-mediated necroptosis and endothelial dysfunction.

  • Chaperone HSP90/p23 is a novel RIP3- and MLKL-interacting complex in HPAECs.

  • HSP90/p23 is a novel RIP3- and MLKL-interacting complex in RIP-MLKL-mediated necroptosis, inflammation and endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ARDS:

Acute respiratory distress syndrome

cIAP1/2:

Cellular inhibitor of apoptosis 1/2

ECs:

Endothelial cells

FADD:

Fas-associated protein with death domain

HPAECs:

Human pulmonary artery endothelial cells

HSPs:

Heat shock proteins

RIP3:

Receptor-interacting protein Kinase 3

RIP1:

Receptor-interacting protein Kinase 1

MLKL:

Mixed lineage kinase domain-like pseudokinase

NSA:

Necrosulfonamide

TNFR1:

Tumour necrosis factor receptor 1

TRADD:

TNFR1-associated death domain protein

TRAF2:

TNFR associated factor 2

17-AAG:

17-allylamino-17-demethoxygeldanamycin

References

  1. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    Article  CAS  PubMed  Google Scholar 

  2. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni L, Rhodes A, Slutsky AS, Vincent JL, Rubenfeld GD, Thompson BT, Ranieri VM (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38:1573–1582

    Article  PubMed  Google Scholar 

  3. Tang PS, Mura M, Seth R, Liu M (2008) Acute lung injury and cell death: how many ways can cells die? Am J Phys Lung Cell Mol Phys 294:L632–L641

    CAS  Google Scholar 

  4. Wang L, Wang T, Li H, Liu Q, Zhang Z, Xie W, Feng Y, Socorburam T, Wu G, Xia Z et al (2016) Receptor interacting protein 3-mediated Necroptosis promotes lipopolysaccharide-induced inflammation and acute respiratory distress syndrome in mice. PLoS One 11:e0155723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227

    Article  CAS  PubMed  Google Scholar 

  6. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 109:5322–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Lamki RS, Lu W, Manalo P, Wang J, Warren AY, Tolkovsky AM, Pober JS, Bradley JR (2016) Tubular epithelial cells in renal clear cell carcinoma express high RIPK1/3 and show increased susceptibility to TNF receptor 1-induced necroptosis. Cell Death Dis 7:e2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459

    Article  CAS  PubMed  Google Scholar 

  9. Singla S, Sysol JR, Dille B, Jones N, Chen J, Machado RF (2017) Hemin causes lung microvascular endothelial barrier dysfunction by necroptotic cell death. Am J Respir Cell Mol Biol 57:307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lv X, Wen T, Song J, Xie D, Wu L, Jiang X, Jiang P, Wen Z (2017) Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome. Respir Res 18:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y, Zhang Y (2018) Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res 65:e12503

    Article  PubMed  CAS  Google Scholar 

  12. Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel B, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen K, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM (2017) The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 22:601–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Urban MJ, Dobrowsky RT, Blagg BS (2012) Heat shock response and insulin-associated neurodegeneration. Trends Pharmacol Sci 33:129–137

    Article  CAS  PubMed  Google Scholar 

  14. Hoter A, El-Sabban ME, Naim HY (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19:e2560

  15. Wang M, Shen A, Zhang C, Song Z, Ai J, Liu H, Sun L, Ding J, Geng M, Zhang A (2016) Development of heat shock protein (Hsp90) inhibitors to combat resistance to tyrosine kinase inhibitors through Hsp90-kinase interactions. J Med Chem 59:5563–5586

    Article  CAS  PubMed  Google Scholar 

  16. Li D, Xu T, Cao Y, Wang H, Li L, Chen S, Wang X, Shen Z (2015) A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci U S A 112:5017–5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li D, Li C, Li L, Chen S, Wang L, Li Q, Wang X, Lei X, Shen Z (2016) Natural product Kongensin a is a non-canonical HSP90 inhibitor that blocks RIP3-dependent Necroptosis. Cell Chem Biol 23:257–266

    Article  CAS  PubMed  Google Scholar 

  18. Park SY, Shim JH, Chae JI, Cho YS (2015) Heat shock protein 90 inhibitor regulates necroptotic cell death via down-regulation of receptor interacting proteins. Pharmazie 70:193–198

    CAS  PubMed  Google Scholar 

  19. Jacobsen AV, Silke J (2016) The importance of being chaperoned: HSP90 and necroptosis. Cell Chem Biol 23:205–207

    Article  CAS  PubMed  Google Scholar 

  20. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320

    Article  CAS  PubMed  Google Scholar 

  21. Guo H, Kaiser WJ, Mocarski ES (2015) Manipulation of apoptosis and necroptosis signaling by herpesviruses. Med Microbiol Immunol 204:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhargava M, Wendt CH (2012) Biomarkers in acute lung injury. Transl Res 159:205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vasseur P, Devaure I, Sellier J, Delwail A, Chagneau-Derrode C, Charier F, Tougeron D, Tasu JP, Rabeony H, Lecron JC, Silvain C (2014) High plasma levels of the pro-inflammatory cytokine IL-22 and the anti-inflammatory cytokines IL-10 and IL-1ra in acute pancreatitis. Pancreatology 14:465–469

    Article  CAS  PubMed  Google Scholar 

  24. Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A, Andrake M, Rall GF, Degterev A, Balachandran S (2013) Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci U S A 110:E3109–E3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moujalled DM, Cook WD, Okamoto T, Murphy J, Lawlor KE, Vince JE, Vaux DL (2013) TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1. Cell Death Dis 4:e465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gonzales JN, Gorshkov B, Varn MN, Zemskova MA, Zemskov EA, Sridhar S, Lucas R, Verin AD (2014) Protective effect of adenosine receptors against lipopolysaccharide-induced acute lung injury. Am J Phys Lung Cell Mol Phys 306:L497–L507

    CAS  Google Scholar 

  27. Shen H, Liu C, Zhang D, Yao X, Zhang K, Li H, Chen G (2017) Role for RIP1 in mediating necroptosis in experimental intracerebral hemorrhage model both in vivo and in vitro. Cell Death Dis 8:e2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, Zhang M, Wu H, Guo J, Zhang X, Hu X, Cao CM, Xiao RP (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22:175–182

    Article  PubMed  CAS  Google Scholar 

  29. Qing DY, Conegliano D, Shashaty MG, Seo J, Reilly JP, Worthen GS, Huh D, Meyer NJ, Mangalmurti NS (2014) Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation. Am J Respir Crit Care Med 190:1243–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frantzeskaki F, Armaganidis A, Orfanos SE (2017) Immunothrombosis in acute respiratory distress syndrome: cross talks between inflammation and coagulation. Respiration 93:212–225

    Article  CAS  PubMed  Google Scholar 

  31. Gandhirajan RK, Meng S, Chandramoorthy HC, Mallilankaraman K, Mancarella S, Gao H, Razmpour R, Yang XF, Houser SR, Chen J, Koch WJ, Wang H, Soboloff J, Gill DL, Madesh M (2013) Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. J Clin Invest 123:887–902

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Siegmund D, Kums J, Ehrenschwender M, Wajant H (2016) Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis. Cell Death Dis 7:e2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, Zelic M, Kirsch P, Basic M, Bleich A, Kelliher M, Pasparakis M (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saveljeva S, Mc Laughlin SL, Vandenabeele P, Samali A, Bertrand MJ (2015) Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis 6:e1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Newton K (2015) RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol 25:347–353

    Article  CAS  PubMed  Google Scholar 

  36. Dong W, Zhang M, Zhu Y, Chen Y, Zhao X, Li R, Zhang L, Ye Z, Liang X (2017) Protective effect of NSA on intestinal epithelial cells in a necroptosis model. Oncotarget 8:86726–86735

    PubMed  PubMed Central  Google Scholar 

  37. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    Article  CAS  PubMed  Google Scholar 

  38. Bonnet MC, Preukschat D, Welz PS, van Loo G, Ermolaeva MA, Bloch W, Haase I, Pasparakis M (2011) The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35:572–582

    Article  CAS  PubMed  Google Scholar 

  39. Lu JV, Weist BM, van Raam BJ, Marro BS, Nguyen LV, Srinivas P, Bell BD, Luhrs KA, Lane TE, Salvesen GS, Walsh CM (2011) Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc Natl Acad Sci U S A 108:15312–15317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, Kirsch P, Sterner-Kock A, van Loo G, Pasparakis M (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477:330–334

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471:373–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee EW, Kim JH, Ahn YH, Seo J, Ko A, Jeong M, Kim SJ, Ro JY, Park KM, Lee HW et al (2012) Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat Commun 3:978

    Article  PubMed  CAS  Google Scholar 

  43. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  44. Madon-Simon M, Grad I, Bayo P, Perez P, Picard D (2017) Defective glucocorticoid receptor signaling and keratinocyte-autonomous defects contribute to skin phenotype of mouse embryos lacking the Hsp90 co-chaperone p23. PLoS One 12:e0180035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Echtenkamp FJ, Gvozdenov Z, Adkins NL, Zhang Y, Lynch-Day M, Watanabe S, Peterson CL, Freeman BC (2016) Hsp90 and p23 molecular chaperones control chromatin architecture by maintaining the functional Pool of the RSC chromatin remodeler. Mol Cell 64:888–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (contract grant numbers 81800047 to X.Y. 31820103007 and 31771276 to D.Z.),University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (contract grant numbers UNPYSCT-2018067 to X.Y.), Wu Liande Young Scientific Research Foundation of Harbin Medical University Daqing (contract grant number DQWLD20 to X.Y.) and Postdoctoral Research Funding (contract grant number LBH-Q19140 to X.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Daling Zhu conceived the experiments. Xiufeng Yu, Mao Min, Xia Liu, Tingting Sheng, Tingting Li, Hao Yu and Xijuan Zhao conducted the experiments. Junting Zhang registered information on human samples and Xinxin Chen collected the plasma and bronchoalveolar lavage fluid (BALF) of human samples. Xiufeng Yu analysed and interpreted the data. Xiufeng Yu and Min Mao wrote the manuscript. Xiufeng Yu prepared the figures. All authors read and approved the final manuscript. Xiufeng Yu and Min Mao contribute equally for this study and were considered the co-first author. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daling Zhu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The collection of human specimens was approved by the Biomedical Ethics Committee of the First Affiliated Hospital of Harbin Medical University, and the written informed consent were obtained from each patient.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 60 kb)

ESM 2

(DOCX 4765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Mao, M., Liu, X. et al. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome. J Mol Med 98, 569–583 (2020). https://doi.org/10.1007/s00109-020-01886-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01886-y

Keywords

Navigation