Skip to main content

Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy

Abstract

Diabetic cardiomyopathy (DCM) is a major cause of morbidity and mortality in diabetic patients. Reactive oxygen species (ROS) produced by oxidative stress play an important role in the development of DCM. DCM involves abnormal energy metabolism, thereby reducing energy production. Exercise has been reported to be effective in protecting the heart against ROS accumulation during the development of DCM. We hypothesize that the AMPK/PGC-1α axis may play a crucial role in exercise-induced bioenergetic metabolism and aerobic respiration on oxidative stress parameters in the development of diabetic cardiomyopathy. Using a streptozotocin/high-fat diet mouse to generate a diabetic model, our aim was to evaluate the effects of exercise on the cardiac function, mitochondrial oxidative capacity, mitochondrial function, and cardiac expression of PGC-1α. Mice fed a high-fat diet were given MO-siPGC-1α or treated with AMPK inhibitor. Mitochondrial structure and effects of switching between the Warburg effect and aerobic respiration were analysed. Exercise improved blood pressure and systolic dysfunction in diabetic mouse hearts. The beneficial effects of exercise were also observed in a mitochondrial function study, as reflected by an enhanced oxidative phosphorylation level, increased membrane potential, and decreased ROS level and oxygen consumption. On the other hand, depletion of PGC-1α attenuated the effects of exercise on the enhancement of mitochondrial function. In addition, PGC-1α may be responsible for reversing the Warburg effect to aerobic respiration, thus enhancing mitochondrial metabolism and energy homoeostasis. In this study, we demonstrate the protective effects of exercise on shifting energy metabolism from fatty acid oxidation to glucose oxidation in an established diabetic stage. These data suggest that exercise is effective at ameliorating diabetic cardiomyopathy by improving mitochondrial function and reducing metabolic disturbances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

DCM:

Diabetic cardiomyopathy

PGC-1α :

Peroxisome proliferator-activated receptor gamma coactivator 1-α

AMPK:

AMP-activated protein kinase

STZ:

Streptozotocin

CPT-1α:

Carnitine palmitoyltransferase 1α

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator

MO-siPGC-1α:

Morpholino (MO)-based oligos to inhibit PGC-1α translation

References

  1. Huynh K, Bernardo BC, McMullen J, Ritchie RH (2014) Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 142(3):375–415

    PubMed  CAS  Google Scholar 

  2. Miki T, Yuda S, Kouzu H, Miura T (2013) Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 18(2):149–166

    PubMed  Google Scholar 

  3. Rijzewijk LJ, van der Meer R, Lamb HJ, de Jong HW, Lubberink M, Romijn JA, Bax JJ, de Roos A, Twisk JW, Heine RJ, Lammertsma AA, Smit JW, Diamant M (2009) Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol 54(16):1524–1532

    PubMed  CAS  Google Scholar 

  4. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenna W, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J 29(2):270–276

    PubMed  Google Scholar 

  5. Schulman SP, Fleg JL, Goldberg AP, Busby-Whitehead J, Hagberg JM, O'Connor FC, Gerstenblith G, Becker LC, Katzel LI, Lakatta LE, Lakatta EG (1996) Continuum of cardiovascular performance across a broad range of fitness levels in healthy older men. Circulation 94(3):359–367

    PubMed  CAS  Google Scholar 

  6. Stratton JR, Levy WC, Cerqueira MD, Schwartz RS, Abrass IB (1994) Cardiovascular responses to exercise. Effects of aging and exercise training in healthy men. Circulation 89(4):1648–1655

    PubMed  CAS  Google Scholar 

  7. Seo DY et al (2012) Aged garlic extract enhances exercise-mediated improvement of metabolic parameters in high fat diet-induced obese rats. Nutr Res Pract 6(6):513–519

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J (2016) Age-related changes in skeletal muscle mitochondria: the role of exercise. Integr Med Res 5(3):182–186

    PubMed  PubMed Central  Google Scholar 

  9. Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB (2015) Resistance exercise training alters mitochondrial function in human skeletal muscle. Med Sci Sports Exerc 47(9):1922–1931

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ (2006) Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48(8):1688–1697

    PubMed  CAS  Google Scholar 

  11. Cai L (2006) Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med 41(6):851–861

    PubMed  CAS  Google Scholar 

  12. Nichols GA et al (2001) Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care 24(9):1614–1619

    PubMed  CAS  Google Scholar 

  13. Liang Q, Carlson EC, Donthi RV, Kralik PM, Shen X, Epstein PN (2002) Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes 51(1):174–181

    PubMed  CAS  Google Scholar 

  14. Matsushima S, Kinugawa S, Ide T, Matsusaka H, Inoue N, Ohta Y, Yokota T, Sunagawa K, Tsutsui H (2006) Overexpression of glutathione peroxidase attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Am J Phys Heart Circ Phys 291(5):H2237–H2245

    CAS  Google Scholar 

  15. Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, Epstein PN (2004) Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53(5):1336–1343

    PubMed  CAS  Google Scholar 

  16. Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55(3):798–805

    PubMed  CAS  Google Scholar 

  17. Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5(7):e11707

    PubMed  PubMed Central  Google Scholar 

  18. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839

    PubMed  CAS  Google Scholar 

  19. Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, Yang W, Altshuler D, Puigserver P, Patterson N, Willy PJ, Schulman IG, Heyman RA, Lander ES, Spiegelman BM (2004) Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A 101(17):6570–6575

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54(7):1926–1933

    PubMed  CAS  Google Scholar 

  21. Xu W, Wang Y, Guo Y, Liu J, Ma L, Cao W, Yu B, Zhou Y (2018) Fibroblast growth factor 19 improves cardiac function and mitochondrial energy homoeostasis in the diabetic heart. Biochem Biophys Res Commun 505(1):242–248

    PubMed  CAS  Google Scholar 

  22. Kim WH, Lee JW, Suh YH, Lee HJ, Lee SH, Oh YK, Gao B, Jung MH (2007) AICAR potentiates ROS production induced by chronic high glucose: roles of AMPK in pancreatic beta-cell apoptosis. Cell Signal 19(4):791–805

    PubMed  CAS  Google Scholar 

  23. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55(8):2256–2264

    PubMed  CAS  Google Scholar 

  24. Motoshima H, Goldstein BJ, Igata M, Araki E (2006) AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574(Pt 1):63–71

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(11):1288–1295

    PubMed  CAS  Google Scholar 

  26. Gibala MJ et al (1985), 2009) Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol 106(3):929–934

    Google Scholar 

  27. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, Mamer OA, Avizonis D, DeBerardinis R, Siegel PM, Jones RG (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17(1):113–124

    PubMed  CAS  Google Scholar 

  28. Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, Svensson RU, Mamer OA, Avizonis D, Shackelford DB, Shaw RJ, Jones RG (2014) Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha. Proc Natl Acad Sci U S A 111(7):2554–2559

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Kishton RJ, Barnes CE, Nichols AG, Cohen S, Gerriets VA, Siska PJ, Macintyre AN, Goraksha-Hicks P, de Cubas AA, Liu T, Warmoes MO, Abel ED, Yeoh AE, Gershon TR, Rathmell WK, Richards KL, Locasale JW, Rathmell JC (2016) AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab 23(4):649–662

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8(5–6):691–728

    PubMed  CAS  Google Scholar 

  31. Fisher AB (2009) Redox signaling across cell membranes. Antioxid Redox Signal 11(6):1349–1356

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93(9):802–805

    PubMed  CAS  Google Scholar 

  33. Tomita M, Mukae S, Geshi E, Umetsu K, Nakatani M, Katagiri T (1996) Mitochondrial respiratory impairment in streptozotocin-induced diabetic rat heart. Jpn Circ J 60(9):673–682

    PubMed  CAS  Google Scholar 

  34. Kucharska J et al (2000) Deficit of coenzyme Q in heart and liver mitochondria of rats with streptozotocin-induced diabetes. Physiol Res 49(4):411–418

    PubMed  CAS  Google Scholar 

  35. Cai L, Kang YJ (2001) Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 1(3):181–193

    PubMed  CAS  Google Scholar 

  36. Guertl B, Noehammer C, Hoefler G (2000) Metabolic cardiomyopathies. Int J Exp Pathol 81(6):349–372

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Chatham JC, Gao ZP, Forder JR (1999) Impact of 1 wk of diabetes on the regulation of myocardial carbohydrate and fatty acid oxidation. Am J Phys 277(2 Pt 1):E342–E351

    CAS  Google Scholar 

  38. Marshall BA et al (1999) GLUT-1 or GLUT-4 transgenes in obese mice improve glucose tolerance but do not prevent insulin resistance. Am J Phys 276(2 Pt 1):E390–E400

    CAS  Google Scholar 

  39. Rodrigues B, Cam MC, McNeill JH (1998) Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 180(1–2):53–57

    PubMed  CAS  Google Scholar 

  40. Pogatsa G (2001) Metabolic energy metabolism in diabetes: therapeutic implications. Coron Artery Dis 12(Suppl 1):S29–S33

    PubMed  Google Scholar 

  41. Fruchart JC, Staels B, Duriez P (2001) The role of fibric acids in atherosclerosis. Curr Atheroscler Rep 3(1):83–92

    PubMed  CAS  Google Scholar 

  42. Burri L, Thoresen GH, Berge RK (2010) The role of PPARalpha activation in liver and muscle. PPAR Res 2010

  43. Schupp M, Kintscher U, Fielitz J, Thomas J, Pregla R, Hetzer R, Unger T, Regitz-Zagrosek V (2006) Cardiac PPARalpha expression in patients with dilated cardiomyopathy. Eur J Heart Fail 8(3):290–294

    PubMed  CAS  Google Scholar 

  44. Moreno-Santos I, Pérez-Belmonte LM, Macías-González M, Mataró MJ, Castellano D, López-Garrido M, Porras-Martín C, Sánchez-Fernández PL, Gómez-Doblas JJ, Cardona F, de Teresa-Galván E, Jiménez-Navarro M (2016) Type 2 diabetes is associated with decreased PGC1alpha expression in epicardial adipose tissue of patients with coronary artery disease. J Transl Med 14(1):243

    PubMed  PubMed Central  Google Scholar 

  45. An D, Rodrigues B (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291(4):H1489–H1506

    PubMed  CAS  Google Scholar 

  46. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415(6867):96–99

    PubMed  CAS  Google Scholar 

  47. Bosetti F, Baracca A, Lenaz G, Solaini G (2004) Increased state 4 mitochondrial respiration and swelling in early post-ischemic reperfusion of rat heart. FEBS Lett 563(1–3):161–164

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported through grants from the National Natural Science Foundation (Project Numbers: 81800269; 81800362; 81670373; 81670459), the National Key R&D Program of China (2016YFC1301100), and Young Innovative Talents Training Plan of General Undergraduate Colleges and Universities of Heilongjiang Province (UNPYSCT-2018074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Cao or Jingjin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Exercise Ameliorates Cardiac Dysfunction by Decreasing ROS Production.

Exercise enhances the mitochondrial oxidative capacity in the diabetic heart.

Exercise shifts energy metabolism from fatty acid oxidation to glucose oxidation.

Exercise regulates cardiac energy metabolism switching through activation of PGC-1α.

Exercise maintains metabolic homeostasis through an AMPK/PGC-1α-dependent circuit.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S.Y., Zhu, S., Wu, J. et al. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. J Mol Med 98, 245–261 (2020). https://doi.org/10.1007/s00109-019-01861-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01861-2

Keywords