Skip to main content

Advertisement

Log in

Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Alveolar and myocardial hypoxia may be causes or sequelae of pulmonary hypertension (PH) and heart failure. We hypothesized that hypoxia initiates specific epigenetic and transcriptional, pro-inflammatory programs in the right ventricle (RV) and left ventricle (LV). We performed an expression screen of 750 miRNAs by qPCR arrays in the murine RV and LV in normoxia (Nx) and hypoxia (Hx; 10% O2 for 18 h, 48 h, and 5d). Additional validation included single qPCR analysis of miRNA and pro-inflammatory transcripts in murine and human RV/LV, and neonatal rat cardiomyocytes (NRCMs). Differential qPCR-analysis (Hx vs. Nx in RV, Hx vs. Nx in LV, and RV vs. LV in Hx) identified nine hypoxia-regulated miRNAs: let-7e-5p, miR-29c-3p, miR-127-3p, miR-130a-3p, miR-146b-5p, miR-197-3p, miR-214-3p, miR-223-3p, and miR-451. Hypoxia downregulated miR-146b in the RV (p < 0.01) and, less so, in the LV (trend; p = 0.28). In silico alignment showed significant binding affinity of miR-146b-5p sequence with the 3’UTR of TRAF6 known to be upstream of pro-inflammatory NF-kB. Consistently, hypoxia induced TRAF6, IL-6, CCL2(MCP-1) in the mouse RV and LV. Incubating neonatal rat cardiomyocytes with pre-miR-146b led to a downregulation of TRAF6, IL-6, and CCL2(MCP-1). TRAF6 mRNA expression was also increased by 3-fold in the RV and LV of end-stage idiopathic pulmonary arterial hypertension (PAH) patients vs. non-PAH controls. We identified hypoxia-regulated, ventricle-specific miRNA expression profiles in the adult mouse heart in vivo. Hypoxia suppresses miR-146b, thus de-repressing TRAF6, and inducing pro-inflammatory IL-6 and CCL2(MCP-1). This novel hypoxia-induced miR-146b-TRAF6-IL-6/CCL2(MCP-1) axis likely drives cardiac fibrosis and dysfunction, and may lead to heart failure.

Key messages

Chouvarine P, Legchenko E, Geldner J, Riehle C, Hansmann G.

Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle.

• Hypoxia drives ventricle-specific miRNA profiles, regulating cardiac inflammation.

• miR-146b-5p downregulates TRAF6, known to act upstream of pro-inflammatory NF-κB.

• Hypoxia downregulates miR-146b and induces TRAF6, IL-6, CCL2 (MCP-1) in the murine RV and LV.

• The inhibitory regulatory effects of miR-146b are confirmed in primary rat cardiomyocytes (pre-miR, anti-miR) and human explant heart tissue (endstage pulmonary arterial hypertension).

• A novel miR-146b-TRAF6-IL-6/CCL2(MCP-1) axis likely drives cardiac inflammation, fibrosis and ventricular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hansmann G (2017) Pulmonary hypertension in infants, children, and young adults. J Am Coll Cardiol 69:2551–2569

    Article  PubMed  Google Scholar 

  2. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR (2014) Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 115:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vergadi E, Chang MS, Lee C, Liang OD, Liu X, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S (2011) Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation 123:1986–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shao D, Tian R (2015) Glucose transporters in cardiac metabolism and hypertrophy. Compr Physiol 6:331–351

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vogt AM, Elsässer A, Nef H, Bode C, Kübler W, Schaper J (2003) Increased glycolysis as protective adaptation of energy depleted, degenerating human hibernating myocardium. Mol Cell Biochem 242:101–107

    Article  CAS  PubMed  Google Scholar 

  7. Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9:1072–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nallamshetty S, Chan SY, Loscalzo J (2013) Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 64:20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chun HJ, Bonnet S, Chan SY (2017) Translational advances in the field of pulmonary hypertension. Translating MicroRNA biology in pulmonary hypertension. It will take more than “miR” words. Am J Respir Crit Care Med 195:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boon RA, Dimmeler S (2015) MicroRNAs in myocardial infarction. Nat Rev Cardiol 12:135–142

    Article  CAS  PubMed  Google Scholar 

  11. Hale AE, White K, Chan SY (2012) Hypoxamirs in pulmonary hypertension: breathing new life into pulmonary vascular research. Cardiovasc Diagn Ther 2:200–212

    PubMed  PubMed Central  Google Scholar 

  12. Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, Hale A, Cottrill KA, Shaik RS, Waxman AB, Zhang YY, Maron BA, Hartner JC, Fujiwara Y, Orkin SH, Haley KJ, Barabási AL, Loscalzo J, Chan SY (2012) MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 125:1520–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Legchenko E, Chouvarine P, Borchert P, Fernandez-Gonzalez A, Snay E, Meier M, Maegel L, Mitsialis SA, Rog-Zielinska EA, Kourembanas S, Jonigk D, Hansmann G (2018) PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci Transl Med 10:eaao0303

    Article  CAS  PubMed  Google Scholar 

  14. Calvier L, Chouvarine P, Legchenko E, Hoffmann N, Geldner J, Borchert P, Jonigk D, Mozes MM, Hansmann G (2017) PPARγ links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism. Cell Metab 25:1118–1134.e7

    Article  CAS  PubMed  Google Scholar 

  15. Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR (2010) Downregulation of microRNA-29 by antisense inhibitors and a PPAR-γ agonist protects against myocardial ischaemia–reperfusion injury. Cardiovasc Res 87:535–544

    Article  CAS  PubMed  Google Scholar 

  16. Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M (2013) Negative regulation of toll-like receptor 4 signaling by IL-10–dependent microRNA-146b. Proc Natl Acad Sci 110:11499–11504

    Article  PubMed  Google Scholar 

  17. Ma X, Becker Buscaglia LE, Barker JR, Li Y (2011) MicroRNAs in NF-κB signaling. J Mol Cell Biol 3:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanchez O, Marcos E, Perros F, Fadel E, Tu L, Humbert M, Dartevelle P, Simonneau G, Adnot S, Eddahibi S (2007) Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 176:1041–1047

    Article  CAS  PubMed  Google Scholar 

  19. Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, Trembath RC, Jennings S, Barker L, Nicklin P, Walker C, Budd DC, Pepke-Zaba J, Morrell NW (2010) Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122:920–927

    Article  CAS  PubMed  Google Scholar 

  20. Greco S, Gaetano C, Martelli F (2014) HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid Redox Signal 21:1202–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lv G, Shao S, Dong H, Bian X, Yang X, Dong S (2014) MicroRNA-214 protects cardiac myocytes against H2O2-induced injury. J Cell Biochem 115:93–101

    Article  CAS  PubMed  Google Scholar 

  22. Bao M-H, Feng X, Zhang Y-W, Lou XY, Cheng Y, Zhou HH (2013) Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells. Int J Mol Sci 14:23086–23102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu C, Wang X, Ha T, Hu Y, Liu L, Zhang X, Yu H, Miao J, Kao R, Kalbfleisch J, Williams D, Li C (2015) Attenuation of cardiac dysfunction and remodeling of myocardial infarction by microRNA-130a are mediated by suppression of PTEN and activation of PI3K dependent signaling. J Mol Cell Cardiol 89:87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Y-F, Li D-C, Shen Y-Q et al (2017) MiR-146b protects cardiomyocytes injury in myocardial ischemia/reperfusion by targeting Smad4. Am J Transl Res 9:656

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Song L, Su M, Wang S, Zou Y, Wang X, Wang Y, Cui H, Zhao P, Hui R, Wang J (2014) MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med 18:2266–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Azzouzi HE, Leptidis S, Doevendans PA, De Windt LJ (2015) HypoxamiRs: regulators of cardiac hypoxia and energy metabolism. Trends Endocrinol Metab 26:502–508

    Article  CAS  PubMed  Google Scholar 

  27. Liu H, Huan L, Yin J, Qin M, Zhang Z, Zhang Z, Zhang J, Wang S (2017) Role of microRNA-130a in myocardial hypoxia/reoxygenation injury. Exp Ther Med 13:759–765

    Article  CAS  PubMed  Google Scholar 

  28. Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43:D146–D152

    Article  CAS  PubMed  Google Scholar 

  29. Hulsmans M, Van Dooren E, Mathieu C, Holvoet P (2012) Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin. PLoS One 7:e32794. https://doi.org/10.1371/journal.pone.0032794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiang M, Birkbak NJ, Vafaizadeh V, Walker SR, Yeh JE, Liu S, Kroll Y, Boldin M, Taganov K, Groner B, Richardson AL, Frank DA (2014) STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-κB to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal 7:ra11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prins KW, Archer SL, Pritzker M et al (2017) Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. J Heart Lung Transplant 36:S168

    Article  Google Scholar 

  32. Dunlay SM, Weston SA, Redfield MM, Killian JM, Roger V́L (2008) Tumor necrosis factor-α and mortality in heart failure. Circulation 118:625–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morimoto H, Takahashi M, Izawa A, Ise H, Hongo M, Kolattukudy PE, Ikeda U (2006) Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction. Circ Res 99:891–899

    Article  CAS  PubMed  Google Scholar 

  34. Zhang S, Zhao Q, Fang N, Yu J (2015) Betulin inhibits pro-inflammatory cytokines expression through activation STAT3 signaling pathway in human cardiac cells. Eur Rev Med Pharmacol Sci 19:455–460

    PubMed  Google Scholar 

  35. Elschami M, Scherr M, Philippens B, Gerardy-Schahn R (2013) Reduction of STAT3 expression induces mitochondrial dysfunction and autophagy in cardiac HL-1 cells. Eur J Cell Biol 92:21–29

    Article  CAS  PubMed  Google Scholar 

  36. Murphy MP (2012) Modulating mitochondrial intracellular location as a redox signal. In: Sci Signal, vol 5, p pe39

    Google Scholar 

  37. Ghigo A, Franco I, Morello F, Hirsch E (2014) Myocyte signalling in leucocyte recruitment to the heart. Cardiovasc Res 102:270–280

    Article  CAS  PubMed  Google Scholar 

  38. Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li J-W, He S-Y, Feng Z-Z et al (2015) MicroRNA-146b inhibition augments hypoxia-induced cardiomyocyte apoptosis. Mol Med Rep 12:6903–6910

    Article  CAS  PubMed  Google Scholar 

  40. Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, Urbach A, Thornton JE, Triboulet R, Gregory RI, DIAGRAM Consortium, MAGIC Investigators, Altshuler D, Daley GQ (2011) The Lin28/let-7 axis regulates glucose metabolism. Cell 147:81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Bond Lau W, Rong R, Yu X, Wang B, Li Y, Xiao C, Zhang M, Wang S, Yu L, Chen AF, Yang X, Cai J (2011) Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124:175–U154

    Article  CAS  PubMed  Google Scholar 

  42. Mallilankaraman K, Cárdenas C, Doonan P et al (2012) MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol 14:1336–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86:410–420

    Article  CAS  PubMed  Google Scholar 

  44. Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians. Circulation 121:2045–2066

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, Zhou LY, Sun T, Wang M, Yu T, Gong Y, Liu J, Dong YH, Li N, Li PF (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37:2602–2611

    Article  CAS  PubMed  Google Scholar 

  46. Huang Y, Tang S, Huang C, Chen J, Li J, Cai A, Feng Y (2017) Circulating miRNA29 family expression levels in patients with essential hypertension as potential markers for left ventricular hypertrophy. Clin Exp Hypertens 39:119–125

    Article  CAS  PubMed  Google Scholar 

  47. Schulte C, Molz S, Appelbaum S, Karakas M, Ojeda F, Lau DM, Hartmann T, Lackner KJ, Westermann D, Schnabel RB, Blankenberg S, Zeller T (2015) miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One 10:e0145930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McManus DD, Freedman JE (2015) MicroRNAs in platelet function and cardiovascular disease. Nat Rev Cardiol 12:711–717

    Article  CAS  PubMed  Google Scholar 

  49. Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SLT, Wong MTK, Lim SC, Sum CF, Jeyaseelan K (2012) Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97:E2271–E2276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nadine Hoffmann for excellent technical assistance and help with the literature search. We acknowledge Dr. Hannes Sallmon for critically reading the manuscript. We thank Dr. Frauke von Versen-Höynck, Dr. Bianca Schröder-Heurich, and Katja Borns for technical assistance with cellular hypoxia experiments.

Grant support

This study was supported by the German Research Foundation (DFG; HA4348/6–1, KFO311) and Stiftung KinderHerz (2511-6-13-011; all grants to G.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Hansmann.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouvarine, P., Legchenko, E., Geldner, J. et al. Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle. J Mol Med 97, 1427–1438 (2019). https://doi.org/10.1007/s00109-019-01817-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01817-6

Keywords

Navigation