Skip to main content

Advertisement

Log in

Exosomes from patients with Parkinson’s disease are pathological in mice

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cell-to-cell transport of risk molecules is a highly anticipated pathogenic mechanism in the initiation and progression of various neurodegenerative diseases. Extracellular exosome-mediated neuron to neuron transport of α-synuclein (α-syn) is increasingly recognized as a potential etiologic mechanism in Parkinson’s disease (PD). Exosomal inflammation has also been increasingly implicated in PD pathogenesis and could trigger, facilitate, or aggravate disease development. However, these mechanisms have not been verified systematically, especially in vivo. Since serum contains abundant exosomes, the correlation between serum exosomes and PD pathogenesis remains unknown. Here, we show that exosomes from PD patient serum contain more α-syn and inflammatory factors such as IL-1β and TNF-α than neurological normal controls, eventually cause α-syn, ubiquitin, and P62 aggregation in recipient cells. More importantly, the intravenous or intrastriatal treatment of mice with exosomes from PD patient serum could evoke protein aggregation, trigger dopamine neuron degeneration, induce microglial activation, and cause apomorphine-coaxed rotation and movement defects. All these findings imply the exosome pathway as a new pathogenesis mechanism for PD, and therefore may present new targets for therapeutics.

Key messages

  • We have presented the evidence for a relationship between PD (Parkinson’s disease) patients’ serum exosomes and pathogenesis.

  • PD patients’ serum-derived exosomes could induce α-syn, ubiquitin and P62 aggregation in recipient cells.

  • Intravenous or intrastriatal treatments of mice with PD exosomes were able to recapitulate the molecular, cellular and behavioral phenotypes of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  3. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  CAS  PubMed  Google Scholar 

  4. McCann H, Cartwright H, Halliday GM (2016) Neuropathology of alpha-synuclein propagation and Braak hypothesis. Mov Disord 31:152–160

    Article  CAS  PubMed  Google Scholar 

  5. Guo JL, Lee VM (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20:130–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han C, Sun X, Liu L, Jiang H, Shen Y, Xu X, Li J, Zhang G, Huang J, Lin Z, Xiong N, Wang T (2016) Exosomes and their therapeutic potentials of stem cells. Stem Cells Int 2016:7653489

    PubMed  Google Scholar 

  7. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    Article  CAS  PubMed  Google Scholar 

  8. Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232

    Article  CAS  PubMed  Google Scholar 

  9. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  10. Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Neuroinflammation 11:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stuendl A, Kunadt M, Kruse N, Bartels C, Moebius W, Danzer KM, Mollenhauer B, Schneider A (2016) Induction of alpha-synuclein aggregate formation by CSF exosomes from patients with Parkinson's disease and dementia with Lewy bodies. Brain 139:481–494

    Article  PubMed  Google Scholar 

  12. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V (2015) Alpha-synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344

    Article  CAS  PubMed  Google Scholar 

  13. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord 30:1591–1601

    Article  PubMed  Google Scholar 

  14. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  CAS  PubMed  Google Scholar 

  15. Li P, Kaslan M, Lee SH, Yao J, Gao Z (2017) Progress in exosome isolation techniques. Theranostics 7:789–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oyarce AM, Fleming PJ (1991) Multiple forms of human dopamine beta-hydroxylase in SH-SY5Y neuroblastoma cells. Arch Biochem Biophys 290:503–510

    Article  CAS  PubMed  Google Scholar 

  17. Lee BR, Kamitani T (2011) Improved immunodetection of endogenous alpha-synuclein. Plos One 6:e23939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu W, Li Y, Jalewa J, Saunders-Wood T, Li L, Holscher C (2015) Neuroprotective effects of an oxyntomodulin analogue in the MPTP mouse model of Parkinson's disease. Eur J Pharmacol 765:284–290

    Article  CAS  PubMed  Google Scholar 

  19. Nie S, Xu Y, Chen G, Ma K, Han C, Guo Z, Zhang Z, Ye K, Cao X (2015) Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents. Neuropharmacology 99:448–458

    Article  CAS  PubMed  Google Scholar 

  20. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu LY, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, Li Y, Aro P, Dator R, He C, Hipp MJ, Zabetian CP, Peskind ER, Hu SC, Quinn JF, Galasko DR, Banks WA, Zhang J (2014) Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathol 128:639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108:4194–4199

    Article  PubMed  PubMed Central  Google Scholar 

  23. Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, Lee VMY (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DM, Hasegawa M (2013) Prion-like spreading of pathological alpha-synuclein in brain. Brain 136:1128–1138

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9:13–24

    Article  CAS  PubMed  Google Scholar 

  26. Recasens A, Dehay B, Bove J, Carballo-Carbajal I, Dovero S, Perez-Villalba A, Fernagut PO, Blesa J, Parent A, Perier C et al (2014) Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75:351–362

    Article  CAS  PubMed  Google Scholar 

  27. Minakaki G, Menges S, Kittel A, Emmanouilidou E, Schaeffner I, Barkovits K, Bergmann A, Rockenstein E, Adame A, Marxreiter F, Mollenhauer B, Galasko D, Buzás EI, Schlötzer-Schrehardt U, Marcus K, Xiang W, Lie DC, Vekrellis K, Masliah E, Winkler J, Klucken J (2018) Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy 14:98–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim S, Yun SP, Lee S, Umanah GE, Bandaru VVR, Yin XL, Rhee P, Karuppagounder SS, Kwon SH, Lee H, Mao X, Kim D, Pandey A, Lee G, Dawson VL, Dawson TM, Ko HS (2018) GBA1 deficiency negatively affects physiological alpha-synuclein tetramers and related multimers. Proc Natl Acad Sci U S A 115:798–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tentillier N, Etzerodt A, Olesen MN, Rizalar FS, Jacobsen J, Bender D, Moestrup SK, Romero-Ramos M (2016) Anti-inflammatory modulation of microglia via CD163-targeted glucocorticoids protects dopaminergic neurons in the 6-OHDA Parkinson's disease model. J Neurosci 36:9375–9390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    Article  CAS  PubMed  Google Scholar 

  32. Edgren G, Hjalgrim H, Rostgaard K, Lambert P, Wikman A, Norda R, Titlestad KE, Erikstrup C, Ullum H, Melbye M, Busch MP, Nyrén O (2016) Transmission of neurodegenerative disorders through blood transfusion a cohort study. Ann Intern Med 165:316–324

    Article  PubMed  Google Scholar 

  33. Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL, Zhang K, Liu YH, Zeng F, Liu JH, Sun HL, Zhuang ZQ, Chen SH, Yao XQ, Giunta B, Shan YC, Tan J, Chen XW, Dong ZF, Zhou HD, Zhou XF, Song W, Wang YJ (2017) Blood-derived amyloid-beta protein induces Alzheimer's disease pathologies. Mol Psychiatry 23:1948–1956

    Article  CAS  PubMed  Google Scholar 

  34. Middeldorp J, Lehallier B, Villeda SA, Miedema SS, Evans E, Czirr E, Zhang H, Luo J, Stan T, Mosher KI et al (2016) Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol 73:1325–1333

    Article  PubMed  PubMed Central  Google Scholar 

  35. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, Smith LK, Bieri G, Lin K, Berdnik D, Wabl R, Udeochu J, Wheatley EG, Zou B, Simmons DA, Xie XS, Longo FM, Wyss-Coray T (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20:659–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30:6838–6851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants 81671260 (to TW) and 81471305 (to TW), 81873782 (to NX) and 81301082 (to JSH) from the National Natural Science Foundation of China, grants 2017YFC1310200 (to TW), 2016YFC1306000 (to TW), 2016YFC1306600 (to NX), and 2018YFC1314700 (to NX) from the National Key R&D Program of China, Grant 2016CFB624 from Natural Science Foundation of Hubei Province (to NX), Grant 2017050304010278 from The Youth Science and Technology Morning Light Program of Wuhan City (to NX), 2018 Hubei Medical Research Project WJ2019F030 (to NX), 2018 Wuhan Medical Research Project S201802140011 (to NX), 2018 Wuhan Young and Middle-aged Medical Talents Program (to NX) and 2017 Hubei Provincial Party Committee Organization Department the Second Batch of Hubei Youth Elite Development Plan (to NX) and US NIH DA021409 (ZL).

Author information

Authors and Affiliations

Authors

Contributions

Author T. W designed the study. Author C. H, N. X and X.F.G participated in performing the research. Author J.S.H, J.Y.L, X.B.C, and Z.C.L revised this manuscript. Author K. M and L. L raised the animals. Author Y. X, Y. S, J. L, and H.Y.J collected the blood sample. L.X.W and S.Y.G isolated the exosomes. X.Y.X and Z.T.Z managed the literature searches and analyses. Author G.X. Z undertook the statistical analysis. All authors participated in writing and reviewing the manuscript.

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

All procedures performed in studies involving human participants were approved by the ethics committee of Tongji Medical College, Huazhong University of Science and Technology. All animal experiments were ethically approved by the Institutional Animal Ethical Committee of Tongji Medical College, Huazhong University of Science and Technology. Informed consent was obtained from all individual participants in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhicheng Lin Joint last author

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Xiong, N., Guo, X. et al. Exosomes from patients with Parkinson’s disease are pathological in mice. J Mol Med 97, 1329–1344 (2019). https://doi.org/10.1007/s00109-019-01810-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01810-z

Keywords

Navigation