Skip to main content
Log in

A rapid, safe, and quantitative in vitro assay for measurement of uracil-DNA glycosylase activity

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Base excision repair (BER) is a frontline repair mechanism that operates through the G1 phase of the cell cycle, which ensures the genome integrity by repairing thousands of DNA lesions due to endogenous and exogenous agents. Its correct functioning is fundamental for cell viability and the health of the organism. Uracil is one of the most prevalent lesions that appears in DNA arising by spontaneous or enzymatic deamination of cytosine or misincorporation of the deoxyuridine 5′-triphosphate nucleotide (dUTP) in place of deoxythymidine 5′-triphosphate (dTTP) during DNA replication. In the first pathway, the uracil will preferentially pair with adenine, leading to C:G → T:A transition. When uracil in DNA arises from misincorporation of dUTP instead of dTTP, this process will result in A:U pairs. Organisms counteract the mutagenic effects of uracil in DNA using the BER repair system, which is mediated by a member of the uracil-DNA glycosylase (UDG) superfamily. Several assays evaluating the in vitro BER enzyme activity have been described so far. Some of these measure the BER activity by an oligonucleotide incision assay using radiolabeled duplex oligo. Others use circular double-stranded DNA substrates containing a defined lesion. The novelty of our method resides in its rapidity and safety (radioactive free detection) as well as in the possibility of having a reliable quantitative determination of UDG activity in both cell and tissue extracts. We also demonstrated the effectiveness of our method in assessing UDG activity in cell lines with a reduced DNA repair capacity and in different kinds of tissues.

Key messages

• Base excision repair is a fundamental repair mechanism ensuring the genome integrity.

• Uracil is one of the most prevalent lesions that appears in DNA.

• The mutagenic effects of uracil in DNA are mitigated by the uracil-DNA glycosylase.

• Several assays evaluating the in vitro BER activity have been described so far.

• A safe and quantitative assay evaluating the in vitro UDG activity is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BER:

Base excision repair

dUTP:

Deoxyuridine 5′-triphosphate nucleotide

dTTP:

Deoxythymidine 5′-triphosphate

UDG:

Uracil-DNA glycosylase

AP:

Apurinic/apyrimidinic

HhH:

Helix-hairpin-helix

MPG:

3-Methyl-purine glycosylase

NEIL:

Endonuclease VIII-like

MSCs:

Mesenchymal stromal cells

UNG:

Uracil N-glycosylase

SMUG1:

Single-strand-selective mono-functional uracil-DNA glycosylase 1

TDG:

Thymine DNA glycosylase

MBD4:

Methyl-CpG-binding domain 4

References

  1. Friedberg EC (2003) DNA damage and repair. Nature 421:436–440

    Article  CAS  PubMed  Google Scholar 

  2. Kim YJ, Wilson DM 3rd (2012) Overview of base excision repair biochemistry. Curr Mol Pharmacol 5:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dianov GL, Hubscher U (2013) Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 41:3483–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Markkanen E, Fischer R, Ledentcova M, Kessler BM, Dianov GL (2015) Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability. Nucleic Acids Res 43:3667–3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9:619–631

    Article  PubMed  Google Scholar 

  6. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120:497–512

    Article  CAS  PubMed  Google Scholar 

  7. Robertson AB, Klungland A, Rognes T, Leiros I (2009) DNA repair in mammalian cells: base excision repair: the long and short of it. Cell Mol Life Sci 66:981–993

    Article  CAS  PubMed  Google Scholar 

  8. Dalhus B, Laerdahl JK, Backe PH, Bjoras M (2009) DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 33:1044–1078

    Article  CAS  PubMed  Google Scholar 

  9. Jacobs AL, Schar P (2012) DNA glycosylases: in DNA repair and beyond. Chromosoma 121:1–20

    Article  CAS  PubMed  Google Scholar 

  10. Brooks SC, Adhikary S, Rubinson EH, Eichman BF (2013) Recent advances in the structural mechanisms of DNA glycosylases. Biochim Biophys Acta 1834:247–271

    Article  CAS  PubMed  Google Scholar 

  11. Sire J, Querat G, Esnault C, Priet S (2008) Uracil within DNA: an actor of antiviral immunity. Retrovirology 5:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prorok P, Alili D, Saint-Pierre C, Gasparutto D, Zharkov DO, Ishchenko AA, Tudek B, Saparbaev MK (2013) Uracil in duplex DNA is a substrate for the nucleotide incision repair pathway in human cells. Proc Natl Acad Sci U S A 110:E3695–E3703

    Article  PubMed  PubMed Central  Google Scholar 

  13. Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD (2017) Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci 22:1493–1522

    Article  CAS  Google Scholar 

  14. Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, Bakke O, Krokan HE (1999) Post-replicative base excision repair in replication foci. EMBO J 18:3834–3844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nilsen H, Haushalter KA, Robins P, Barnes DE, Verdine GL, Lindahl T (2001) Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J 20:4278–4286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Genuardi M, Karbowski M, Yeung AT, Matsumoto Y, Bellacosa A (2000) Investigation of the substrate spectrum of the human mismatch-specific DNA N-glycosylase MED1 (MBD4): fundamental role of the catalytic domain. J Cell Physiol 185:473–480

    Article  CAS  PubMed  Google Scholar 

  17. Waters TR, Swann PF (2000) Thymine-DNA glycosylase and G to A transition mutations at CpG sites. Mutat Res 462:137–147

    Article  CAS  PubMed  Google Scholar 

  18. Imam SZ, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA (2006) Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiol Aging 27:1129–1136

    Article  CAS  PubMed  Google Scholar 

  19. Souza-Pinto NC, Croteau DL, Hudson EK, Hansford RG, Bohr VA (1999) Age-associated increase in 8-oxo-deoxyguanosine glycosylase/AP lyase activity in rat mitochondria. Nucleic Acids Res 27:1935–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frosina G, Cappelli E, Ropolo M, Fortini P, Pascucci B, Dogliotti E (2006) In vitro base excision repair assay using mammalian cell extracts. Methods Mol Biol 314:377–396

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto Y (1999) Base excision repair assay using Xenopus laevis oocyte extracts. Methods Mol Biol 113:289–300

    CAS  PubMed  Google Scholar 

  22. Matsumoto Y (2006) Base excision repair in mammalian cells. Methods Mol Biol 314:365–375

    Article  CAS  PubMed  Google Scholar 

  23. Alessio N, Stellavato A, Squillaro T, Del Gaudio S, Di Bernardo G, Peluso G, De Rosa M, Schiraldi C, Galderisi U (2018) Hybrid complexes of high and low molecular weight hyaluronan delay in vitro replicative senescence of mesenchymal stromal cells: a pilot study for future therapeutic application. Aging 10:1575–1585

    Article  PubMed  PubMed Central  Google Scholar 

  24. Galderisi U, Di Bernardo G, Cipollaro M, Peluso G, Cascino A, Cotrufo R, Melone MA (1999) Differentiation and apoptosis of neuroblastoma cells: role of N-myc gene product. J Cell Biochem 73:97–105

    Article  CAS  PubMed  Google Scholar 

  25. Diggle CP, Bentley J, Kiltie AE (2003) Development of a rapid, small-scale DNA repair assay for use on clinical samples. Nucleic Acids Res 31:e83

    Article  PubMed  PubMed Central  Google Scholar 

  26. Melone MA, Giuliano M, Squillaro T, Alessio N, Casale F, Mattioli E, Cipollaro M, Giordano A, Galderisi U (2009) Genes involved in regulation of stem cell properties: studies on their expression in a small cohort of neuroblastoma patients. Cancer Biol Ther 8:1300–1306

    Article  CAS  PubMed  Google Scholar 

  27. Cirillo A, Di Salle A, Petillo O, Melone MA, Grimaldi G, Bellotti A, Torelli G, De’ Santi MS, Cantatore G, Marinelli A et al (2014) High grade glioblastoma is associated with aberrant expression of ZFP57, a protein involved in gene imprinting, and of CPT1A and CPT1C that regulate fatty acid metabolism. Cancer Biol Ther 15:735–741

    Article  PubMed  PubMed Central  Google Scholar 

  28. Galderisi U, Giordano A (2014) The gap between the physiological and therapeutic roles of mesenchymal stem cells. Med Res Rev 34:1100–1126

    Article  CAS  PubMed  Google Scholar 

  29. Alessio N, Pipino C, Mandatori D, Di Tomo P, Ferone A, Marchiso M, Melone MAB, Peluso G, Pandolfi A, Galderisi U (2018) Mesenchymal stromal cells from amniotic fluid are less prone to senescence compared to those obtained from bone marrow: an in vitro study. J Cell Physiol 233:8996–9006

    Article  CAS  PubMed  Google Scholar 

  30. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848

    Article  PubMed  Google Scholar 

  31. Alessio N, Squillaro T, Ozcan S, Di Bernardo G, Venditti M, Melone M, Peluso G, Galderisi U (2018) Stress and stem cells: adult Muse cells tolerate extensive genotoxic stimuli better than mesenchymal stromal cells. Oncotarget 9:19328–19341

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alessio N, Capasso S, Di Bernardo G, Cappabianca S, Casale F, Calarco A, Cipollaro M, Peluso G, Galderisi U (2017) Mesenchymal stromal cells having inactivated RB1 survive following low irradiation and accumulate damaged DNA: hints for side effects following radiotherapy. Cell Cycle 16:251–258

    Article  CAS  PubMed  Google Scholar 

  33. Squillaro T, Alessio N, Di Bernardo G, Ozcan S, Peluso G, Galderisi U (2018) Stem cells and DNA repair capacity: muse stem cells are among the best performers. Adv Exp Med Biol 1103:103–113

    Article  PubMed  Google Scholar 

  34. Abbotts R, Thompson N, Madhusudan S (2014) DNA repair in cancer: emerging targets for personalized therapy. Cancer Manag Res 6:77–92

    PubMed  PubMed Central  Google Scholar 

  35. Forster JI, Koglsberger S, Trefois C, Boyd O, Baumuratov AS, Buck L, Balling R, Antony PM (2016) Characterization of differentiated SH-SY5Y as neuronal screening model reveals increased oxidative vulnerability. J Biomol Screen 21:496–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nouspikel T (2007) DNA repair in differentiated cells: some new answers to old questions. Neuroscience 145:1213–1221

    Article  CAS  PubMed  Google Scholar 

  37. Fortini P, Dogliotti E (2010) Mechanisms of dealing with DNA damage in terminally differentiated cells. Mutat Res 685:38–44

    Article  CAS  PubMed  Google Scholar 

  38. Jori FP, Napolitano MA, Melone MA, Cipollaro M, Cascino A, Giordano A, Galderisi U (2004) Role of RB and RB2/P130 genes in marrow stromal stem cells plasticity. J Cell Physiol 200:201–212

    Article  CAS  PubMed  Google Scholar 

  39. Murillo JR, Goto-Silva L, Sanchez A, Nogueira FCS, Domont GB, Junqueira M (2017) Quantitative proteomic analysis identifies proteins and pathways related to neuronal development in differentiated SH-SY5Y neuroblastoma cells. EuPA Open Proteom 16:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang LJ, Ren M, Zhang Q, Tang B, Zhang CY (2017) Excision repair-initiated enzyme-assisted bicyclic cascade signal amplification for ultrasensitive detection of uracil-DNA glycosylase. Anal Chem 89:4488–4494

    Article  CAS  PubMed  Google Scholar 

  41. Esadze A, Rodriguez G, Weiser BP, Cole PA, Stivers JT (2017) Measurement of nanoscale DNA translocation by uracil DNA glycosylase in human cells. Nucleic Acids Res 45:12413–12424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gorniak JP, Cameron KM, Waldron KJ, von Zglinicki T, Mathers JC, Langie SA (2013) Tissue differences in BER-related incision activity and non-specific nuclease activity as measured by the comet assay. Mutagenesis 28:673–681

    Article  CAS  PubMed  Google Scholar 

  43. Langie SA, Cameron KM, Waldron KJ, Fletcher KP, von Zglinicki T, Mathers JC (2011) Measuring DNA repair incision activity of mouse tissue extracts towards singlet oxygen-induced DNA damage: a comet-based in vitro repair assay. Mutagenesis 26:461–471

    Article  CAS  PubMed  Google Scholar 

  44. Tamai M, Adachi E, Tagawa Y (2013) Characterization of a liver organoid tissue composed of hepatocytes and fibroblasts in dense collagen fibrils. Tissue Eng A 19:2527–2535

    Article  CAS  Google Scholar 

  45. Ceglia L (2008) Vitamin D and skeletal muscle tissue and function. Mol Asp Med 29:407–414

    Article  CAS  Google Scholar 

  46. Frosina G, Fortini P, Rossi O, Carrozzino F, Abbondandolo A, Dogliotti E (1994) Repair of abasic sites by mammalian cell extracts. Biochem J 304(Pt 3):699–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kubota Y, Nash RA, Klungland A, Schar P, Barnes DE, Lindahl T (1996) Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J 15:6662–6670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klungland A, Lindahl T (1997) Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 16:3341–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Allinson SL, Dianova II, Dianov GL (2001) DNA polymerase beta is the major dRP lyase involved in repair of oxidative base lesions in DNA by mammalian cell extracts. EMBO J 20:6919–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Souza-Pinto NC, Hogue BA, Bohr VA (2001) DNA repair and aging in mouse liver: 8-oxodG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radic Biol Med 30:916–923

    Article  PubMed  Google Scholar 

  51. Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA (2004) Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 18:595–597

    Article  CAS  PubMed  Google Scholar 

  52. Leung CH, Zhong HJ, He HZ, Lu L, Chanb DSH, Ma DL (2013) Luminescent oligonucleotide-based detection of enzymes involved with DNA repair. Chem Sci 4:3781

    Article  CAS  Google Scholar 

  53. Hu D, Huang Z, Pu F, Ren J, Qu X (2011) A label-free, quadruplex-based functional molecular beacon (LFG4-MB) for fluorescence turn-on detection of DNA and nuclease. Chemistry 17:1635–1641

    Article  CAS  PubMed  Google Scholar 

  54. Leung KH, He HZ, Ma VP, Zhong HJ, Chan DS, Zhou J, Mergny JL, Leung CH, Ma DL (2013) Detection of base excision repair enzyme activity using a luminescent G-quadruplex selective switch-on probe. Chem Commun 49:5630–5632

    Article  CAS  Google Scholar 

  55. Zhang L, Zhao J, Jiang J, Yu R (2012) A target-activated autocatalytic DNAzyme amplification strategy for the assay of base excision repair enzyme activity. Chem Commun 48:8820–8822

    Article  CAS  Google Scholar 

  56. Zhang Y, Li CC, Tang B, Zhang CY (2017) Homogeneously sensitive detection of multiple DNA glycosylases with intrinsically fluorescent nucleotides. Anal Chem 89:7684–7692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.A.B.M. and T.S. acknowledge PON I&C 2014-2020 “Micro/nanoformulati innovativi per la valorizzazione di molecole bioattive, utili per la salute e il benessere delle popolazione, ottenute da prodotti di scarto della filiera ittica (FOR.TUNA)” project, Grant/Award Number: F/050347/03IX32 – Ministero dello Sviluppo Economico (MiSE).

Author information

Authors and Affiliations

Authors

Contributions

TS and MF planned and performed experiments and wrote the paper; SDG performed experiments; NA and GDB analyzed data; MABM and GP contributed reagents and other essential material; UG conceived and supervised the study.

Corresponding author

Correspondence to Umberto Galderisi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squillaro, T., Finicelli, M., Alessio, N. et al. A rapid, safe, and quantitative in vitro assay for measurement of uracil-DNA glycosylase activity. J Mol Med 97, 991–1001 (2019). https://doi.org/10.1007/s00109-019-01788-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01788-8

Keywords

Navigation