Macrophage derived TNFα promotes hepatic reprogramming to Warburg-like metabolism

Abstract

During infection, hepatocytes must undergo a reprioritization of metabolism, termed metabolic reprogramming. Hepatic metabolic reprogramming in response to infection begins within hours of infection, suggesting a mechanism closely linked to pathogen recognition. Following injection with polyinosinic:polycytidylic acid, a mimic of viral infection, a robust hepatic innate immune response could be seen involving the TNFα pathway at 2 h. Repeated doses led to the adoption of Warburg-like metabolism in the liver as determined by in vivo metabolic imaging, expression analyses, and metabolomics. Hepatic macrophages, Kupffer cells, were able to induce Warburg-like metabolism in hepatocytes in vitro via TNFα. Eliminating macrophages in vivo or blocking TNFα in vitro or in vivo resulted in abrogation of the metabolic phenotype, establishing an immune-metabolic axis in hepatic metabolic reprogramming. Overall, we suggest that macrophages, as early sensors of pathogens, instruct hepatocytes via TNFα to undergo metabolic reprogramming to cope with challenges to homeostasis initiated by infection. This work not only addresses a key component of end-organ physiology, but also raises questions about the side effects of biologics in the treatment of inflammatory diseases.

Key messages

• Hepatocytes develop Warburg-like metabolism in vivo during viral infection.

• Macrophage TNFα promotes expression of glycolytic enzymes in hepatocytes.

• Blocking this immune-metabolic axis abrogates Warburg-like metabolism in the liver.

• Implications for patients being treated for inflammatory diseases with biologics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Beisel WR (1975) Metabolic response to infection. Annu Rev Med 26:9–20

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Bratovanov D (1970) A new method of determining and analyzing seasonality of acute infectious diseases. Zh Mikrobiol Epidemiol Immunobiol 47:62–67

    CAS  PubMed  Google Scholar 

  3. 3.

    Dubois EF (1937) The mechanism of heat loss and temperature regulation. Stanford University Press, Stanford

    Google Scholar 

  4. 4.

    He JJ, Ma J, Elsheikha HM, Song HQ, Zhou DH, Zhu XQ (2016) Proteomic profiling of mouse liver following acute Toxoplasma gondii infection. PLoS One 11:e0152022. https://doi.org/10.1371/journal.pone.0152022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Hajjou M, Norel R, Carver R, Marion P, Cullen J, Rogler LE, Rogler CE (2005) cDNA microarray analysis of HBV transgenic mouse liver identifies genes in lipid biosynthetic and growth control pathways affected by HBV. J Med Virol 77:57–65

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Tong AP, Wu LH, Lin QS, Lau QC, Zhao X, Li J, Chen P, Chen LJ, Tang H, Huang CH et al (2008) Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model. Proteomics 8:2012–2023

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    McGuire PJ, Tarasenko TN, Wang T, Levy E, Zerfas PM, Moran T, Lee HS, Bequette BJ, Diaz GA (2014) Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency. Dis Model Mech 7:205–213

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Tarasenko TN, McGuire PJ (2017) The liver is a metabolic and immunologic organ: a reconsideration of metabolic decompensation due to infection in inborn errors of metabolism (IEM). Mol Genet Metab 121:283–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Tarasenko TN, Singh LN, Chatterji-Len M, Zerfas PM, Cusmano-Ozog K, McGuire PJ (2015) Kupffer cells modulate hepatic fatty acid oxidation during infection with PR8 influenza. Biochim Biophys Acta 1852:2391–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Jensen KJ, Alpini G, Glaser S (2013) Hepatic nervous system and neurobiology of the liver. Comprehensive Physiology 3:655–665

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Smedsrod B, Pertoft H (1985) Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J Leukoc Biol 38:213–230

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Lute B, Jou W, Lateef DM, Goldgof M, Xiao C, Pinol RA, Kravitz AV, Miller NR, Huang YG, Girardet C et al (2014) Biphasic effect of melanocortin agonists on metabolic rate and body temperature. Cell Metab 20:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C (2012) Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7:1235–1246

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 55:14 10 11–14 10 91

    Article  Google Scholar 

  15. 15.

    Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. https://doi.org/10.1093/nar/gky310

  16. 16.

    Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Likos AM, Kelvin DJ, Cameron CM, Rowe T, Kuehnert MJ, Norris PJ, National Heart LBIREDS II (2007) Influenza viremia and the potential for blood-borne transmission. Transfusion 47:1080–1088

    Article  PubMed  Google Scholar 

  18. 18.

    Tarasenko TN, Cusmano-Ozog K, McGuire PJ (2018) Tissue acylcarnitine status in a mouse model of mitochondrial beta-oxidation deficiency during metabolic decompensation due to influenza virus infection. Mol Genet Metab. https://doi.org/10.1016/j.ymgme.2018.06.012

  19. 19.

    Yang YT, Evans CA (1961) Hypothermia in mice due to influenza virus infection. P Soc Exp biol med 108:776 &

    Article  CAS  Google Scholar 

  20. 20.

    Ramsay DS, Woods SC (2016) Physiological regulation: how it really works. Cell Metab 24:361–364

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Durnin J (1981) Basal metabolic rate in man. Report to FAO/WHO/UNU, Rome, Italy

  22. 22.

    Scroggins BT, Matsuo M, White AO, Saito K, Munasinghe JP, Sourbier C, Yamamoto K, Diaz V, Takakusagi Y, Ichikawa K et al (2018) Hyperpolarized [1-(13)C]-pyruvate magnetic resonance spectroscopic imaging of prostate cancer in vivo predicts efficacy of targeting the Warburg effect. Clin Cancer Res 24:3137–3148

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Gutte H, Hansen AE, Henriksen ST, Johannesen HH, Ardenkjaer-Larsen J, Vignaud A, Hansen AE, Borresen B, Klausen TL, Wittekind AM et al (2015) Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner. Am J Nucl Med Mol Imaging 5:38–45

    CAS  PubMed  Google Scholar 

  24. 24.

    Gutte H, Hansen AE, Johannesen HH, Clemmensen AE, Ardenkjaer-Larsen JH, Nielsen CH, Kjaer A (2015) The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer. Am J Nucl Med Mol Imaging 5:548–560

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Chen Y, Kim H, Bok R, Sukumar S, Mu X, Sheldon RA, Barkovich AJ, Ferriero DM, Xu D (2016) Pyruvate to lactate metabolic changes during neurodevelopment measured dynamically using hyperpolarized 13C imaging in juvenile murine brain. Dev Neurosci 38:34–40

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Ding C, Li Y, Guo F, Jiang Y, Ying W, Li D, Yang D, Xia X, Liu W, Zhao Y et al (2016) A cell-type-resolved liver proteome. Mol Cell Proteomics 15:3190–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Rui L (2014) Energy metabolism in the liver. Comprehensive Physiology 4:177–197

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Francis BM, Yang J, Song BJ, Gupta S, Maj M, Bazinet RP, Robinson B, Mount HT (2014) Reduced levels of mitochondrial complex I subunit NDUFB8 and linked complex I + III oxidoreductase activity in the TgCRND8 mouse model of Alzheimer’s disease. J Alzheimers Dis 39:347–355

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Rafikov R, Sun X, Rafikova O, Meadows ML, Desai AA, Khalpey Z, Yuan JX, Fineman JR, Black SM (2015) Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells. Redox Biol 6:278–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Escoll P, Buchrieser C (2018) Metabolic reprogramming of host cells upon bacterial infection: why shift to a Warburg-like metabolism? FEBS J 285:2146–2160

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54–S62

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Ye J, Jiang R, Cui M, Zhu B, Sun L, Wang Y, Zohaib A, Dong Q, Ruan X, Song Y et al (2014) Etanercept reduces neuroinflammation and lethality in mouse model of Japanese encephalitis. J Infect Dis 210:875–889

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343:338–344

    Article  CAS  Google Scholar 

  34. 34.

    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Shestov AA, Liu XJ, Ser Z, Cluntun AA, Hung YP, Huang L, Kim D, Le A, Yellen G, Albeck JG, et al. (2014) Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. Elife 3

  37. 37.

    Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14:986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE (2013) Kupffer cells in the liver. Comprehensive Physiology 3:785–797

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Prommer E (2007) Prostate cancer and liver dysfunction: a case of cytokine dysregulation. J Pain Symptom Manag 34:225–226

    Article  Google Scholar 

  42. 42.

    Lawlor DK, Brock RW, Harris KA, Potter RF (1999) Cytokines contribute to early hepatic parenchymal injury and microvascular dysfunction after bilateral hindlimb ischemia. J Vasc Surg 30:533–541

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Dhainaut JF, Marin N, Mignon A, Vinsonneau C (2001) Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med 29:S42–S47

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Possamai LA, Antoniades CG, Anstee QM, Quaglia A, Vergani D, Thursz M, Wendon J (2010) Role of monocytes and macrophages in experimental and human acute liver failure. World J Gastroenterol 16:1811–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Jayaraman A, Yarmush ML, Roth CM (2005) Evaluation of an in vitro model of hepatic inflammatory response by gene expression profiling. Tissue Eng 11:50–63

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Kang YH, Berthiaume F, Yarmush ML (2002) Long-term stable cultures of rat hepatocytes: an in vitro model to study acute and chronic hepatic inflammation. Tissue Eng 8:681–693

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Kalliolias GD, Ivashkiv LB (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 12:49–62

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Vaughan RA, Garcia-Smith R, Trujillo KA, Bisoffi M (2013) Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxidative metabolism in prostate epithelial cells. Prostate 73:1538–1546

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Remels AHV, Gosker HR, Verhees KJP, Langen RCJ, Schols AMWJ (2015) TNF-alpha-induced NF-kappa B activation stimulates skeletal muscle glycolytic metabolism through activation of HIF-1 alpha. Endocrinology 156:1770–1781

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Vaughan RA, Garcia-Smith R, Dorsey J, Griffith JK, Bisoffi M, Trujillo KA (2013) Tumor necrosis factor alpha induces Warburg-like metabolism and is reversed by anti-inflammatory curcumin in breast epithelial cells. Int J Cancer 133:2504–2510

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Regueira T, Lepper PM, Brandt S, Ochs M, Vuda M, Takala J, Jakob SM, Djafarzadeh S (2009) Hypoxia inducible factor-1 alpha induction by tumour necrosis factor-alpha, but not by toll-like receptor agonists, modulates cellular respiration in cultured human hepatocytes. Liver Int 29:1582–1592

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Ghabril M, Bonkovsky HL, Kum C, Davern T, Hayashi PH, Kleiner DE, Serrano J, Rochon J, Fontana RJ, Bonacini M et al (2013) Liver injury from tumor necrosis factor-alpha antagonists: analysis of thirty-four cases. Clin Gastroenterol Hepatol 11:558–564 e553

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Bjornsson ES, Gunnarsson BI, Grondal G, Jonasson JG, Einarsdottir R, Ludviksson BR, Gudbjornsson B, Olafsson S (2015) Risk of drug-induced liver injury from tumor necrosis factor antagonists. Clin Gastroenterol Hepatol 13:602–608

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to recognize the Animal facility of the NHGRI for its help in executing this work.

Funding

This work was supported by the intramural research program of the National Institutes of Health (HG200381-03).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter J. McGuire.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 10321 kb)

Table S1

(XLSX 159 kb)

Table S2

(XLSX 81 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, T.N., Jestin, M., Matsumoto, S. et al. Macrophage derived TNFα promotes hepatic reprogramming to Warburg-like metabolism. J Mol Med 97, 1231–1243 (2019). https://doi.org/10.1007/s00109-019-01786-w

Download citation

Keywords

  • Immunometabolism
  • Metabolic reprogramming
  • Macrophages
  • Tumor necrosis factor alpha
  • Cytokines
  • Hepatocytes
  • Warburg-like metabolism