Skip to main content
Log in

Targeted inhibition of histone deacetylase leads to suppression of Ewing sarcoma tumor growth through an unappreciated EWS-FLI1/HDAC3/HSP90 signaling axis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Ewing sarcoma (ES) are aggressive pediatric bone and soft tissue tumors driven by EWS-ETS fusion oncogenes, most commonly EWS-FLI1. Treatment of ES patients consists of up to 9 months of alternating courses of 2 chemotherapeutic regimens. Furthermore, EWS-ETS-targeted therapies have yet to demonstrate clinical benefit, thereby emphasizing a clinical responsibility to search for new therapeutic approaches. Our previous in silico drug screening identified entinostat as a drug hit that was predicted to reverse the ES disease signatures and EWS-FLI1-mediated gene signatures. Here, we establish preclinical proof of principle by investigating the in vitro and in vivo efficacy of entinostat in preclinical ES models, as well as characterizing the mechanisms of action and in vivo pharmacokinetics of entinostat. ES cells are preferentially sensitive to entinostat in an EWS-FLI1 or EWS-ERG-dependent manner. Entinostat induces apoptosis of ES cells through G0/G1 cell cycle arrest, intracellular reactive oxygen species (ROS) elevation, DNA damage, homologous recombination (HR) repair impairment, and caspase activation. Mechanistically, we demonstrate for the first time that HDAC3 is a transcriptional target of EWS-FLI1 and that entinostat inhibits growth of ES cells through suppressing a previously unexplored EWS-FLI1/HDAC3/HSP90 signaling axis. Importantly, entinostat significantly reduces tumor burden by 97.4% (89.5 vs. 3397.3 mm3 of vehicle, p < 0.001) and prolongs the median survival of mice (15.5 vs. 8.5 days of vehicle, p < 0.001), in two independent ES xenograft mouse models, respectively. Overall, our studies demonstrate promising activity of entinostat against ES, and support the clinical development of the entinostat-based therapies for children and young adults with metastatic/relapsed ES.

Key messages

• Entinostat potently inhibits ES both in vitro and in vivo.

• EWS-FLI1 and EWS-ERG confer sensitivity to entinostat treatment.

• Entinostat suppresses the EWS-FLI1/HDAC3/HSP90 signaling.

• HDAC3 is a transcriptional target of EWS-FLI1.

• HDAC3 is essential for ES cell viability and genomic stability maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balamuth NJ, Womer RB (2010) Ewing’s sarcoma. Lancet Oncol 11:184–192

    Article  CAS  PubMed  Google Scholar 

  2. Jain S, Kapoor G (2010) Chemotherapy in Ewing’s sarcoma. Indian J Orthop 44:369–377

    Article  PubMed  PubMed Central  Google Scholar 

  3. Perkins SM, Shinohara ET, DeWees T, Frangoul H (2014) Outcome for children with metastatic solid tumors over the last four decades. PLoS One 9:e100396. https://doi.org/10.1371/journal.pone.0100396

    Article  PubMed  PubMed Central  Google Scholar 

  4. Womer RB, West DC, Krailo MD, Dickman PS, Pawel BR, Grier HE, Marcus K, Sailer S, Healey JH, Dormans JP, Weiss AR (2012) Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 30:4148–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hamilton SN, Carlson R, Hasan H, Rassekh SR, Goddard K (2017) Long-term outcomes and complications in pediatric Ewing sarcoma. Am J Clin Oncol 40:423–428

    Article  PubMed  Google Scholar 

  6. May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, Zucman J, Thomas G, Denny CT (1993) Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci U S A 90:5752–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arvand A, Denny CT (2001) Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 20:5747–5754

    Article  CAS  PubMed  Google Scholar 

  8. DuBois SG, Krailo MD, Lessnick SL, Smith R, Chen Z, Marina N, Grier HE, Stegmaier K, Children's Oncology G (2009) Phase II study of intermediate-dose cytarabine in patients with relapsed or refractory Ewing sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 52:324–327

    Article  PubMed  PubMed Central  Google Scholar 

  9. Baruchel S, Pappo A, Krailo M, Baker KS, Wu B, Villaluna D, Lee-Scott M, Adamson PC, Blaney SM (2012) A phase 2 trial of trabectedin in children with recurrent rhabdomyosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft tissue sarcomas: a report from the Children’s Oncology Group. Eur J Cancer 48:579–585

    Article  CAS  PubMed  Google Scholar 

  10. Wagner LM, Fouladi M, Ahmed A, Krailo MD, Weigel B, DuBois SG, Doyle LA, Chen H, Blaney SM (2015) Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 62:440–444

    Article  CAS  PubMed  Google Scholar 

  11. Michelagnoli M, Whelan J, Forsyth S, Otis Trial Management Group SI (2015) A phase II study to determine the efficacy and safety of oral treosulfan in patients with advanced pre-treated Ewing sarcoma ISRCTN11631773. Pediatr Blood Cancer 62:158–159

    Article  CAS  PubMed  Google Scholar 

  12. Grohar PJ, Glod J, Peer CJ, Sissung TM, Arnaldez FI, Long L, Figg WD, Whitcomb P, Helman LJ, Widemann BC (2017) A phase I/II trial and pharmacokinetic study of mithramycin in children and adults with refractory Ewing sarcoma and EWS-FLI1 fusion transcript. Cancer Chemother Pharmacol 80:645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsafou K, Tiwari PB, Forman-Kay JD, Metallo SJ, Toretsky JA (2018) Targeting intrinsically disordered transcription factors: changing the paradigm. J Mol Biol 430:2321–2341

    Article  CAS  PubMed  Google Scholar 

  14. Pessetto ZY, Chen B, Alturkmani H, Hyter S, Flynn CA, Baltezor M, Ma Y, Rosenthal HG, Neville KA, Weir SJ, Butte AJ, Godwin AK (2017) In silico and in vitro drug screening identifies new therapeutic approaches for Ewing sarcoma. Oncotarget 8:4079–4095

    Article  PubMed  Google Scholar 

  15. Knipstein J, Gore L (2011) Entinostat for treatment of solid tumors and hematologic malignancies. Expert Opin Investig Drugs 20:1455–1467

    Article  CAS  PubMed  Google Scholar 

  16. Hess-Stumpp H, Bracker TU, Henderson D, Politz O (2007) MS-275, a potent orally available inhibitor of histone deacetylases—the development of an anticancer agent. Int J Biochem Cell Biol 39:1388–1405

    Article  CAS  PubMed  Google Scholar 

  17. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, Suzuki T, Tsuruo T, Nakanishi O (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A 96:4592–4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, Sebree R, Rodgers K, Hooker CM, Franco N, Lee B, Tsai S, Delgado IE, Rudek MA, Belinsky SA, Herman JG, Baylin SB, Brock MV, Rudin CM (2011) Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 1:598–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yardley DA, Ismail-Khan RR, Melichar B, Lichinitser M, Munster PN, Klein PM, Cruickshank S, Miller KD, Lee MJ, Trepel JB (2013) Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol 31:2128–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pili R, Quinn DI, Hammers HJ, Monk P, George S, Dorff TB, Olencki T, Shen L, Orillion A, Lamonica D, Fragomeni RS, Szabo Z, Hutson A, Groman A, Perkins SM, Piekarz R, Carducci MA (2017) Immunomodulation by entinostat in renal cell carcinoma patients receiving high-dose interleukin 2: a multicenter, single-arm, phase I/II trial (NCI-CTEP#7870). Clin Cancer Res 23:7199–7208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaboin J, Wild J, Hamidi H, Khanna C, Kim CJ, Robey R, Bates SE, Thiele CJ (2002) MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 62:6108–6115

    CAS  PubMed  Google Scholar 

  22. Sonnemann J, Dreyer L, Hartwig M, Palani CD, Hong le TT, Klier U, Broker B, Volker U, Beck JF (2007) Histone deacetylase inhibitors induce cell death and enhance the apoptosis-inducing activity of TRAIL in Ewing's sarcoma cells. J Cancer Res Clin Oncol 133:847–858

    Article  CAS  PubMed  Google Scholar 

  23. Hedrick E, Crose L, Linardic CM, Safe S (2015) Histone deacetylase inhibitors inhibit rhabdomyosarcoma by reactive oxygen species-dependent targeting of specificity protein transcription factors. Mol Cancer Ther 14:2143–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ambati SR, Lopes EC, Kosugi K, Mony U, Zehir A, Shah SK, Taldone T, Moreira AL, Meyers PA, Chiosis G, Moore MAS (2014) Pre-clinical efficacy of PU-H71, a novel HSP90 inhibitor, alone and in combination with bortezomib in Ewing sarcoma. Mol Oncol 8:323–336

    Article  CAS  PubMed  Google Scholar 

  25. Gierisch ME, Pfistner F, Lopez-Garcia LA, Harder L, Schafer BW, Niggli FK (2016) Proteasomal degradation of the EWS-FLI1 fusion protein is regulated by a single lysine residue. J Biol Chem 291:26922–26933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stecklein SR, Kumaraswamy E, Behbod F, Wang W, Chaguturu V, Harlan-Williams LM, Jensen RA (2012) BRCA1 and HSP90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation. Proc Natl Acad Sci U S A 109:13650–13655

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dote H, Burgan WE, Camphausen K, Tofilon PJ (2006) Inhibition of hsp90 compromises the DNA damage response to radiation. Cancer Res 66:9211–9220

    Article  CAS  PubMed  Google Scholar 

  28. Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, Abaan OD, Chou TH, Dakshanamurthy S, Brown ML, Üren A, Toretsky JA (2009) A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med 15:750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Selvanathan SP, Graham GT, Erkizan HV, Dirksen U, Natarajan TG, Dakic A, Yu S, Liu X, Paulsen MT, Ljungman ME, Wu CH, Lawlor ER, Üren A, Toretsky JA (2015) Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing. Proc Natl Acad Sci U S A 112:E1307–E1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mao X, Miesfeldt S, Yang H, Leiden JM, Thompson CB (1994) The FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificities. J Biol Chem 269:18216–18222

    CAS  PubMed  Google Scholar 

  31. Graham MJ, Lake BG (2008) Induction of drug metabolism: species differences and toxicological relevance. Toxicology 254:184–191

    Article  CAS  PubMed  Google Scholar 

  32. May WA, Grigoryan RS, Keshelava N, Cabral DJ, Christensen LL, Jenabi J, Ji L, Triche TJ, Lawlor ER, Reynolds CP (2013) Characterization and drug resistance patterns of Ewing’s sarcoma family tumor cell lines. PLoS One 8:e80060. https://doi.org/10.1371/journal.pone.0080060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomazou EM, Sheffield NC, Schmidl C, Schuster M, Schonegger A, Datlinger P, Kubicek S, Bock C, Kovar H (2015) Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Rep 10:1082–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suva ML, Rossetti NE, Boonseng WE, Oksuz O, Cook EB et al (2014) EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26:668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pattenden SG, Simon JM, Wali A, Jayakody CN, Troutman J, McFadden AW, Wooten J, Wood CC, Frye SV, Janzen WP et al (2016) High-throughput small molecule screen identifies inhibitors of aberrant chromatin accessibility. Proc Natl Acad Sci U S A 113:3018–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sakimura R, Tanaka K, Nakatani F, Matsunobu T, Li X, Hanada M, Okada T, Nakamura T, Matsumoto Y, Iwamoto Y (2005) Antitumor effects of histone deacetylase inhibitor on Ewing’s family tumors. Int J Cancer 116:784–792

    Article  CAS  PubMed  Google Scholar 

  37. Souza BK, da Costa Lopez PL, Menegotto PR, Vieira IA, Kersting N, Abujamra AL, Brunetto AT, Brunetto AL, Gregianin L, de Farias CB, Thiele CJ, Roesler R (2018) Targeting histone deacetylase activity to arrest cell growth and promote neural differentiation in Ewing sarcoma. Mol Neurobiol 55:7242–7258

    Article  CAS  PubMed  Google Scholar 

  38. Gorthi A, Romero JC, Loranc E, Cao L, Lawrence LA, Goodale E, Iniguez AB, Bernard X, Masamsetti VP, Roston S, Lawlor ER, Toretsky JA, Stegmaier K, Lessnick SL, Chen Y, Bishop AJR (2018) EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 555:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iniguez AB, Stolte B, Wang EJ, Conway AS, Alexe G, Dharia NV, Kwiatkowski N, Zhang T, Abraham BJ, Mora J, Kalev P, Leggett A, Chowdhury D, Benes CH, Young RA, Gray NS, Stegmaier K (2018) EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma. Cancer Cell 33:202–216 e206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith MA, Reynolds CP, Kang MH, Kolb EA, Gorlick R, Carol H, Lock RB, Keir ST, Maris JM, Billups CA, Lyalin D, Kurmasheva RT, Houghton PJ (2015) Synergistic activity of PARP inhibition by talazoparib (BMN 673) with temozolomide in pediatric cancer models in the pediatric preclinical testing program. Clin Cancer Res 21:819–832

    Article  CAS  PubMed  Google Scholar 

  41. Ha K, Fiskus W, Choi DS, Bhaskara S, Cerchietti L, Devaraj SG, Shah B, Sharma S, Chang JC, Melnick AM et al (2014) Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget 5:5637–5650

    Article  PubMed  PubMed Central  Google Scholar 

  42. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barneda-Zahonero B, Parra M (2012) Histone deacetylases and cancer. Mol Oncol 6:579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marks PA (2006) Thioredoxin in cancer—role of histone deacetylase inhibitors. Semin Cancer Biol 16:436–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ryan QC, Headlee D, Acharya M, Sparreboom A, Trepel JB, Ye J, Figg WD, Hwang K, Chung EJ, Murgo A, Melillo G, Elsayed Y, Monga M, Kalnitskiy M, Zwiebel J, Sausville EA (2005) Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol 23:3912–3922

    Article  CAS  PubMed  Google Scholar 

  46. Gojo I, Jiemjit A, Trepel JB, Sparreboom A, Figg WD, Rollins S, Tidwell ML, Greer J, Chung EJ, Lee MJ, Gore SD, Sausville EA, Zwiebel J, Karp JE (2007) Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109:2781–2790

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang X, Zhang Q, Chen M, Hu L (2014) Pharmacokinetic interaction of entinostat and lapatinib following single and co-oral administration in rats. Xenobiotica 44:1009–1013

    Article  CAS  PubMed  Google Scholar 

  48. Acharya MR, Sparreboom A, Sausville EA, Conley BA, Doroshow JH, Venitz J, Figg WD (2006) Interspecies differences in plasma protein binding of MS-275, a novel histone deacetylase inhibitor. Cancer Chemother Pharmacol 57:275–281

    Article  CAS  PubMed  Google Scholar 

  49. Wu Q, Zhang Q, Wen C, Hu L, Wang X, Lin G (2015) The effect of MS-275 on CYP450 isoforms activity in rats by cocktail method. Int J Clin Exp Pathol 8:9360–9367

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Jeff Hirst for technical help in flow cytometry assays and animal studies, Ms. Tara Meyer for technical assistance with H&E and immunohistochemical staining, Dr. Rashna Madan for reviewing the pathology slides, Dr. Richard C. Hastings for technical help in flow cytometry assays and data analysis, and Mr. Mitch Braun and Ms. Carolyn Vivian for assistance with animal studies. We also acknowledge the support of the University of Kansas Cancer Center’s Biospecimen Repository Core Facility and Lead Development and Optimization Shared Resource (P30 CA168524) and the University of Kansas Medical Center’s Flow Cytometry Core Laboratory (P30 GM103326).

Funding

This work was supported by an MCA Partners Advisory Board grant from Children’s Mercy Hospital and The University of Kansas Cancer Center (to KMC and AKG), Braden’s Hope for Childhood Cancer Foundation (to GS & AKG), and the Kansas Bioscience Authority Eminent Scholar Program (to AKG). AKG is the Chancellors Distinguished Chair in Biomedical Sciences Endowed Professor.

Author information

Authors and Affiliations

Authors

Contributions

Y.M. and A.K.G. conceived and designed the study. Y.M., M.B., J.C., and V.S. developed the methodology. Y.M., M.B., L.R., J.C., and G.S. carried out experiments and collected data. Y.M., M.B., L.R., J.C., G.S., and V.S. analyzed, computed, and interpreted the data. Y.M. and M.B. wrote the manuscript. Y.M., M.B., L.R., J.C., G.S., V.S., K.M.C., J.A.T., S.J.W., and A.K.G. reviewed and revised the manuscript. M.B., S.J.W., and A.K.G. provided administrative, technical, and material support. A.K.G. supervised the study.

Corresponding author

Correspondence to Andrew K. Godwin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2280 kb)

ESM 2

(DOCX 30 kb)

ESM 3

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Baltezor, M., Rajewski, L. et al. Targeted inhibition of histone deacetylase leads to suppression of Ewing sarcoma tumor growth through an unappreciated EWS-FLI1/HDAC3/HSP90 signaling axis. J Mol Med 97, 957–972 (2019). https://doi.org/10.1007/s00109-019-01782-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01782-0

Keywords

Navigation