Abstract
Several studies have demonstrated the anti-inflammatory potential of mesenchymal stromal cells (MSCs) isolated from bone marrow, adipose tissue, placenta, and other sources. Nevertheless, MSCs may also induce immunosuppression when administered systemically or directly to injured environments, as shown in different preclinical disease models. MSCs express certain receptors, including toll-like receptors and the aryl-hydrocarbon receptor, that are activated by the surrounding environment, thus leading to modulation of their immunosuppressive activity. Once MSCs are activated, they can affect a wide range of immune cells (e.g., neutrophils, monocytes/macrophages, dendritic cells, natural killer cells, T and B lymphocytes), a phenomenon that has been correlated to secretion of several mediators (e.g., indolamine 2,3-dioxygenase, galectins, prostaglandin E2, nitric oxide, and damage- and pathogen-associated molecular patterns) and stimulation of certain signaling pathways (e.g., protein kinase R, signal transducer and activator of transcription-1, nuclear factor-κB). Additionally, MSC manipulation and culture conditions, as well as the number of passages, duration of cryopreservation, and O2 content available, can significantly affect the immunosuppressive properties of MSCs. This review sheds light on current knowledge regarding the mechanisms by which MSCs exert immunosuppressive effects both in vitro and in vivo, focusing on the receptors expressed by MSCs, the correlation between soluble factors secreted by MSCs and their immunosuppressive effects, and interactions between MSCs and immune cells.
This is a preview of subscription content,
to check access.



Similar content being viewed by others
Abbreviations
- AhR:
-
Aryl-hydrocarbon receptor
- Bregs:
-
Regulatory B cells
- DCs:
-
Dendritic cells
- DCregs:
-
Regulatory dendritic cells
- GvHD:
-
Graft-versus-host disease
- ICAM:
-
Intercellular adhesion molecule
- iDCs:
-
Immature dendritic cells
- IDO:
-
Indoleamine 2,3-dioxygenase
- IFN:
-
Interferon
- IL:
-
Interleukin
- iNOS:
-
Inducible nitric oxide synthase
- JAK:
-
Janus tyrosine kinase
- LPS:
-
Lipopolysaccharide
- MSCs:
-
Mesenchymal stromal cells
- NO:
-
Nitric oxide
- NK:
-
Natural killer
- PBMCs:
-
Peripheral blood mononuclear cells
- PD-1:
-
Programmed cell death receptor-1
- PD-L1:
-
Programmed cell death-ligand 1
- PGE2 :
-
Prostaglandin E2
- STAT:
-
Signal transducer and activator of transcription
- TGF:
-
Transforming growth factor
- TLR:
-
Toll-like receptor
- TNF:
-
Tumor necrosis factor
- TSG-6:
-
Tumor necrosis factor-inducible gene 6
- Tregs:
-
Regulatory T cells
- VCAM:
-
Vascular cell adhesion molecule
References
Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42–48
Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén I (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31(10):890–896
Contreras-Kallens P, Terraza C, Oyarce K, Gajardo T, Campos-Mora M, Barroilhet MT, Alvarez C, Fuentes R, Figueroa F, Khoury M, Pino-Lagos K (2017) Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance. Ann N Y Acad Sci 417(1):35–56
Hall SR, Tsoyi K, Ith B, Padera RF Jr, Lederer JA, Wang Z, Liu X, Perrella MA (2013) Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: the importance of neutrophils. Stem Cells 31(2):397–407
Wu J, Ji C, Cao F, Lui H, Xia B, Wang L (2017) Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b. Biosci Rep 37(2):BSR20160436
Chatterjee D, Tufa DM, Baehre H, Hass R, Schmidt RE, Jacobs R (2014) Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells. Blood 123(4):594–595
Kim DS, Lee WH, Lee MW, Park HJ, Jang IK, Lee JW, Sung KW, Koo HH, Yoo KH (2017) Involvement of TLR3-dependent PGES expression in immunosuppression by human bone marrow mesenchymal stem cells. Stem Cell Rev 14(2):286–293
Dorronsoro A, Ferrin I, Salcedo JM, Jakobsson E, Fernandez-Rueda J, Lang V, Sepulveda P, Fechter K, Pennington D, Trigueros C (2014) Human mesenchymal stromal cells modulate T-cell responses through TNF-alpha-mediated activation of NF-kappaB. Eur J Immunol 44(2):480–488
Hermankova B, Zajicova A, Javorkova E, Chudickova M, Trosan P, Hajkova M, Krulova M, Holan V (2016) Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-gamma-treated mesenchymal stem cells. Immunobiology 221(2):129–136
Li X, Chen Y, Liu X, Zhang J, He X, Teng G, Yu D (2017) Tim3/Gal9 interactions between T cells and monocytes result in an immunosuppressive feedback loop that inhibits Th1 responses in osteosarcoma patients. Int Immunopharmacol 44:153–159
DelaRosa O, Lombardo E (2010) Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediat Inflamm 2010:865601
Raicevic G, Najar M, Stamatopoulos B, De Bruyn C, Meuleman N, Bron D, Toungouz M, Lagneaux L (2011) The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cell Immunol 270(2):207–216
van den Berk LC, Jansen BJ, Siebers-Vermeulen KG, Netea MG, Latuhihin T, Bergevoet S, Raymakers RA, Kogler G, Figdor CC, Adema GJ, Torensma R (2009) Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med 13(9B):3415–3426
Chen D, Ma F, Xu S, Yang S, Chen F, Rong L, Chi Y, Zhao Q, Lu S, Han Z, Pang A, Han Z (2013) Expression and role of toll-like receptors on human umbilical cord mesenchymal stromal cells. Cytotherapy 15(4):423–433
Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S, Cohen IR, Zipori D (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109(4):1422–1432
Hwa Cho H, Bae YC, Jung JS (2006) Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells 24(12):2744–2752
Lombardo E, DelaRosa O, Mancheno-Corvo P, Menta R, Ramirez C, Buscher D (2009) Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Eng A 15(7):1579–1589
Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Koppel A, Tolosa E, Hoberg M, Anderl J, Aicher WK, Weller M, Wick W, Platten M (2009) Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27(4):909–919
Vega-Letter AM, Kurte M, Fernandez-O'Ryan C, Gauthier-Abeliuk M, Fuenzalida P, Moya-Uribe I, Altamirano C, Figueroa F, Irarrazabal C, Carrion F (2016) Differential TLR activation of murine mesenchymal stem cells generates distinct immunomodulatory effects in EAE. Stem Cell Res Ther 7(1):150
Lei J, Wang Z, Hui D, Yu W, Zhou D, Xia W, Chen C, Zhang Q, Wang Z, Zhang Q, Xiang AP (2011) Ligation of TLR2 and TLR4 on murine bone marrow-derived mesenchymal stem cells triggers differential effects on their immunosuppressive activity. Cell Immunol 271(1):147–156
Waterman RS, Tomchuch SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC0) paradigm: polarization into a pro-inflammatory MSC1 or a immunosuppressive MSC2 phenotype. PLoS One 5(4):e10088
Waterman RS, Henkle SL, Betancourt AM (2012) Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One 7(9):e45590
Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130(6):1071–1082
Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO (2009) Recognition of lipopeptide patterns by toll-like receptor 2-toll-like receptor 6 heterodimer. Immunity 31(6):873–884
Liu H, Komai-Koma M, Xu D, Liew FY (2006) Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci U S A 103(18):7048–7053
Najar M, Raicevic G, Fayyad-Kazan H, Bron D, Toungouz M, Lagneaux L (2016) Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy 18(2):160–171
Rashedi I, Gomez-Aristizabal A, Wang XH, Viswanathan S, Keating A (2017) TLR3 or TLR4 activation enhances mesenchymal stromal cell-mediated Treg induction via notch signaling. Stem Cells 35(1):265–275
Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34
Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820
de Almeida DC, Evangelista LSM, Camara NOS (2017) Role of aryl hydrocarbon receptor in mesenchymal stromal cell activation: a minireview. World J Stem Cells 9(9):152–158
Podechard N, Fardel O, Corolleur M, Bernard M, Lecureur V (2009) Inhibition of human mesenchymal stem cell-derived adipogenesis by the environmental contaminant benzo(a)pyrene. Toxicol in Vitro 23(6):1139–1144
Zhou Y, Jiand R, An L, Wang H, Cheng S, Qiong S, Weng Y (2017) Benzo[a]pyrene impedes self-renewal and differentiation of mesenchymal stem cells and influences fracture healing. Sci Total Environ 587-588:305–315
Yamaguchi K, Near RI, Matulka RA, Shneider A, Toselli P, Trombino AF, Sherr DH (1997) Activation of the aryl hydrocarbon receptor/transcription factor and bone marrow stromal cell-dependent preB cell apoptosis. J Immunol 158(5):2165–2173
Allan LL, Mann KK, Matulka RA, Ryu HY, Schlezinger JJ, Sherr DH (2003) Bone marrow stromal-B cell interactions in polycyclic aromatic hydrocarbon-induced pro/pre-B cell apoptosis. Toxicol Sci 76(2):357–365
Yamaguchi K, Matulka RA, Shneider AM, Toselli P, Trombino AF, Yang S, Hafer LJ, Mann KK, Tao XJ, Tilly JL, Near RI, Sherr DH (1997) Induction of PreB cell apoptosis by 7,12-dimethylbenz[a]anthracene in long-term primary murine bone marrow cultures. Toxicol Appl Pharmacol 147(2):190–203
Xu T, Zhou Y, Qiu L, Do DC, Zhao Y, Cui Z, Wang H, Liu X, Saradna A, Cao X, Wan M, Gao P (2015) Aryl hydrocarbon receptor protects lungs from cockroach allergen-induced inflammation by modulating mesenchymal stem cells. J Immunol 195(12):5539–5550
Hinden L, Shainer R, Almogi-Hazan O, Or R (2015) Ex vivo induced regulatory human/murine mesenchymal stem cellsas immune modulators. Stem Cells 33(7):2256–2267
Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13(4):392–402
Moriggl R, Sexl V, Piekorz R, Topham D, Ihle JN (1999) Stat5 activation is uniquely associated with cytokine signaling in peripheral T cells. Immunity 11(2):225–230
Xu H, Zhang GX, Ciric B, Rostami A (2008) IDO: a double-edged sword for T(H)1/T(H)2 regulation. Immunol Lett 121(1):1–6
Luz-Crawford P, Noel D, Fernandez X, Khoury M, Figueroa F, Carrion F, Jorgensen C, Djouad F (2012) Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One 7(9):e45272
Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185(1):302–312
Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333
Kim DS, Jang IK, Lee MW, Ko YJ, Lee DH, Lee JW, Sung KW, Koo HH, Yoo KH (2018) Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-gamma. EBio Med 28:261–273
Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS, von Bonin M, Barbieri L, Halai K, Ward S, Weng L, Chakraverty R, Lombardi G, Watt FM, Orchard K, Marks DI, Apperley J, Bornhauser M, Walczak H, Bennett C, Dazzi F (2017) Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 9(416):eaam7828
Sarkar SA, Wong R, Hackl SI, Moua O, Gill RG, Wiseman A, Davidson HW, Hutton JC (2007) Induction of indoleamine 2,3-dioxygenase by interferon-gamma in human islets. Diabetes 56(1):72–79
Bartosh TJ, Ylostalo JH, Bazhanov N, Kuhlman J, Prockop DJ (2013) Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells 31(11):2443–2456
Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17
Sakai K, Kawata E, Ashihara E, Nakagawa Y, Yamauchi A, Yao H, Nagao R, Tanaka R, Yokota A, Takeuchi M, Hirai H, Kimura S, Hirashima M, Yoshimura N, Maekawa T (2011) Galectin-9 ameliorates acute GVH disease through the induction of T-cell apoptosis. Eur J Immunol 41(1):67–75
Houthuijzen JM, Daenen LG, Roodhart JM, Voest EE (2012) The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer 106(12):1901–1906
Martinez-Martinez E, Ibarrola J, Fernandez-Celis A, Calvier L, Leroy C, Cachofeiro V, Rossignol P, Lopez-Andres N (2017) Galectin-3 pharmacological inhibition attenuates early renal damage in spontaneously hypertensive rats. J Hypertens 36(2):368–376
Sioud M (2011) New insights into mesenchymal stromal cell-mediated T-cell suppression through galectins. Scand J Immunol 73(2):79–84
Wang F, He W, Yuan J, Wu K, Zhou H, Zhang W, Chen ZK (2008) Activation of Tim-3-Galectin-9 pathway improves survival of fully allogeneic skin grafts. Transpl Immunol 19(1):12–19
Gieseke F, Kruchen A, Tzaribachev N, Bentzien F, Dominici M, Muller I (2013) Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation. Eur J Immunol 43(10):2741–2749
Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M, Vermeulen ME, Geffner JR, Rabinovich GA (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10(9):981–991
Madireddi S, Eun SY, Mehta AK, Birta A, Zajonc DM, Niki T, Hirashima M, Podack ER, Schreiber TH, Croft M (2017) Regulatory T cell-mediated suppression of inflammation induced by DR3 signaling is dependent on galectin-9. J Immunol 199(8):2721–2728
Cedeno-Laurent F, Dimitroff CJ (2012) Galectin-1 research in T cell immunity: past, present and future. Clin Immunol 142(2):107–116
Ren G, Zhao X, Zhang L, Zhang J, L'Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, Shi Y (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184(5):2321–2328
Tang B, Li X, Liu Y, Chen X, Li X, Chu Y, Zhu H, Liu W, Xu F, Zhou F, Zhang Y (2018) The therapeutic effect of ICAM-1-overexpressing mesenchymal stem cells on acute graft-versus-host disease. Cell Physiol Biochem: international journal of experimental cellular physiology, biochemistry, and pharmacology 46(6):2624–2635
Rubtsov Y, Goryunov K, Romanov A, Suzdaltseva Y, Sharonov G, Tkachuk V (2017) Molecular mechanisms of immunomodulation properties of mesenchymal stromal cells: a new insight into the role of ICAM-1. Stem Cells Int 2017:6516854
Vasadan AB, Jahnavi S, Shashank C, Prasad P, Kumar A, Prasanna SJ (2016) Human mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep 6:38308
Abreu SC, Lopes-Pacheco M, da Silva AL, Xisto DG, de Oliveira TB, Kitoko JZ, de Castro LL, Amorim NR, Martins V, Silva LHA, Gonçalves-de-Albuquerque CF, de Castro Faria-Neto HC, Olsen PC, Weiss DJ, Morales MM, Diaz BL, PRM R (2018) Eicosapentaenoic acid enhances the effects of mesenchymal stromal cell therapy in experimental allergic asthma. Front Immunol 9:1147
Penke LR, Huang SK, White ES, Peters-Golden M (2014) Prostaglandin E2 inhibits α-smooyh muscle actin transcription during myofibroblast differentiation via distinct mechanisms of modulation of serum response factor and myocardin-related transcription factor-A. J Biol Chem 289(24):17151–17162
Gianchecchi E, Delfino DV, Fierabracci A (2013) Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev 12(11):1091–1100
Wang G, Zhang S, Wang F, Li G, Zhang L, Luan X (2013) Expression and biological function of programmed death ligands in human placenta mesenchymal stem cells. Cell Biol Int 37(2):137–148
Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuates sepsis via prostaglandin E(2)-dependent reprogrammin of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–29
Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777
Dyer DP, Thomson JM, Hermant A, Jowitt TA, Handel TM, Proudfoot AE, Day AJ, Milner CM (2014) TSG-6 inhibits neutrophil migration via direct interaction with the chemokine CXCL8. J Immunol 192(5):2177–2185
Wang G, Cao K, Liu K, Xue Y, Roberts AI, Li F, Han Y, Rabson AB, Wang Y, Shi Y (2018) Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death Differ 25(7):1209–1223
Su J, Chen X, Huang Y, Li W, Li J, Cao K, Cao G, Zhang L, Li F, Roberts AI, Kang H, Yu P, Ren G, Ji W, Wang Y, Shi Y (2014) Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ 21(3):388–396
Lepelletier Y, Lecourt S, Renand A, Arnulf B, Vanneaux V, Fermand JP, Menasche P, Domet T, Marolleau JP, Hermine O, Larghero J (2010) Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow mesenchymal stem cell. Stem Cells Dev 19(7):1075–1079
Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109(1):228–234
Gaber T, Schonbeck K, Hoff H, Trans CL, Strehl C, Lang A, Ohrndorf S, Pfeiffenberger M, Rohner E, Matziolis G, Burmester GR, Buttgereit F, Hoff P (2018) CTLA-4 mediates inhibitory function of mesenchymal stem/stromal cells. Int J Mol Sci 19(8):E2312
Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C, Noel D (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stel Cells 25(8):2025–2031
Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthay MA (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28(12):2229–2238
Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, Ottonello L, Postoia V (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrohpil preservation in the bone marrow niche. Stem Cells 26(1):151–162
Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N, Cont C, Calzetti F, Pelletier M, Pizzolo G, Krampera M (2011) Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29(6):1001–1011
Gazdic M, Simovic Markovic B, Vucicevic L, Nikolic T, Djonov V, Arsenijevic N, Trajkovic V, Lukic ML, Volarevic V (2017) Mesenchymal stem cells protect from acute liver injury by attenuating hepatotoxicity of liver natural killer T cells in an inducible nitric oxide synthase- and indoleamine 2,3-dioxygenase-dependent manner. J Tissue Eng Regen Med 12(2):e1173–e1185
Atoui R, Chiu RC (2012) Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation: update, controversies, and unknowns. Stem Cells Transl Med 1(3):200–205
Ko JH, Lee HJ, Jeong HJ, Kim MK, Wee WR, Yoon SO, Choi H, Prockop DJ, Oh JY (2016) Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye. Proc Natl Acad Sci U S A 113(1):158–163
Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453
Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, Costa H, Canones C, Raiden S, Vermeulen M, Geffner JR (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5(2):e9252
Silva JD, Lopes-Pacheco M, Paz AHR, Cruz FF, Melo EB, de Olivera MV, Xisto DG, Capelozzi VL, Morales MM, Pelosi P, Cirne-Lima E, Rocco PRM (2018) Mesenchymal stem cells from bone marrow, adipose tissue and lung tissue differently mitigate lung and distal organ damage in experimental acute respiratory distress syndrome. Crit Care Med 46(2):e132–e140
Antunes MA, Abreu SC, Cruz FF, Teixeira AC, Lopes-Pacheco M, Bandeira E, Olsen PC, Diaz BL, Takyia CM, Freitas IP, Rocha NN, Capelozzi VL, Xisto DG, Weiss DJ, Morales MM, Rocco PR (2014) Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res 15:118
Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kB signaling in resident macrophages. Blood 118(2):330–338
Espagnolle N, Balguerie A, Arnaud E, Sensebe L, Varin A (2017) CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem cell Reports 8(4):961–976
de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, Shankar AS, O'Flynn L, Elliman SJ, Roy D, Betjes MGH, Newsome PN, Baan CC, Hoogduijn MJ (2018) Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by Monocytic cells. Stem Cells 36(4):602–615
Luk F, de Witte SF, Korevaar SS, Roemeling-van Rhijn M, Franquesa M, Strini T, van den Engel S, Gargesha M, Roy D, Dor FJ, Horwitz EM, de Bruin RW, Betjes MG, Baan CC, Hoogduijn MJ (2016) Inactivated mesenchymal stem cells maintain immunomodulatory capacity. Stem Cells Dev 25(18):1342–1354
Lu W, Fu C, Song L, Yao Y, Zhang X, Chen Z, Li Y, Ma G, Shen C (2013) Exposure to supernatants of macrophages that phagocytized dead mesenchymal stem cells improves hypoxic cardiomyocytes survival. Int J Cardiol 165(2):333–340
Zaslona Z, Przybranowski S, Wilke C, van Rooijen N, Teitz-Tennenbaum S, Osterholzer JJ, Wilkinson JE, Moore BB, Peters-Golden M (2014) Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol 193(8):4245–4253
Luk F, Carreras-Planella L, Korevaar SS, de Witte SFH, Borras FE, Betjes MGH, Baan CC, Hoogduijn MJ, Franquesa M (2017) Inflammatory conditions dictate the effect of mesenchymal stem or stromal cells on B cell function. Front Immunol 8:1042
English K, Barry FP, Mahon BP (2008) Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 115(1):50–58
Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83(1):71–76
Dong L, Chen X, Shao H, Bai L, Li X, Zhang X (2018) Mesenchymal stem cells inhibited dendritic cells via the regulation of STAT1 and STAT6 phosphorylation in experimental autoimmune uveitis. Curr Mol Med 17(7):478–487
Liu WH, Liu JJ, Wu J, Zhang LL, Liu F, Yin L, Zhang MM, Yu B (2013) Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway. PLoS One 8(1):e55487
Liu Y, Yin Z, Zhang R, Yan K, Chen L, Chen F, Huang W, Lv B, Sun C, Jiang X (2014) MSCs inhibit bone marrow-derived DC maturation and function through the release of TSG-6. Biochem Biophys Res Commun 450(4):1409–1415
Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822
Cahill EF, Tobin LM, Carty F, Mahon BP, English K (2015) Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Ther 6:19
Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, Zhu X, Lu C, Liang W, Liao L, Zenke M, Zhao RC (2009) Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 113(1):46–57
Wang M, Yuan Q, Xie L (2018) Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int 2018:3057624
Dimeloe S, Burgener AV, Grahlert J, Hess C (2017) T-cell metabolism governing activation, proliferation and differentiation; a modular view. Immunology 150(1):35–44
Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103(12):4619–4621
Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26(1):212–222
von Rango U (2008) Fetal tolerance in human pregnancy--a crucial balance between acceptance and limitation of trophoblast invasion. Immunol Lett 115(1):21–32
Mougiakakos D, Jitschin R, Johansson CC, Okita R, Kiessling R, Le Blanc K (2011) The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood 117(18):4826–4835
Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843
Kerdidani D, Magkouta S, Chouvardas P, Karavana V, Glynos K, Roumelioti F, Zakynthinos S, Wauters E, Janssens W, Lambrechts D, Kollias G, Tsoumakidou M (2018) Cigarette smoke-induced emphysema exhausts early cytotoxic CD8(+) T cell responses against nascent lung cancer cells. J Immunol 201(5):1558–1569
Poggio HA, Antunes MA, Rocha NN, Kitoko JZ, Morales MM, Olsen PC, Lopes-Pacheco M, Cruz FF, Rocco PRM (2018) Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema. Stem Cell Res Ther 9(1):296
Kovach TK, Dighe AS, Lobo PI, Cui Q (2015) Interactions between MSCs and immune cells: implications for bone healing. J Immunol Res 2015:752510
Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, Mancardi G, Uccelli A (2007) Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 25(7):1753–1760
Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106(5):1755–1761
Zhao Y, Wang L, Jin Y, Shi S (2012) Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J Dent Res 91(10):948–954
English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(high) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156(1):149–160
Qu X, Liu X, Cheng K, Yang R, Zhao RC (2012) Mesenchymal stem cells inhibit Th17 cell differentiation by IL-10 secretion. Exp Hematol 40(9):761–770
Liu X, Ren S, Qu X, Ge C, Cheng K, Zhao RC (2015) Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-gamma-mediated SOCS3 activation. Immunol Res 61(3):219–229
Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178(1):280–290
Saldanha-Araujo F, Ferreira FI, Palma PV, Araujo AG, Queiroz RH, Covas DT, Zago MA, Panepucci RA (2011) Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res 7(1):66–74
Lee JJ, Jeong HJ, Kim MK, Wee WR, Lee WW, Kim SU, Sung C, Yang YH (2014) CD39-mediated effect of human bone marrow-derived mesenchymal stem cells on the human Th17 cell function. Purinergic Signal 10(2):357–365
Takeyama H, Mizushima T, Uemura M, Haraguchi N, Nishimura J, Hata T, Matsuda C, Takemasa I, Ikenaga M, Murata K, Yamamoto H, Doki Y, Mori M (2017) Adipose-derived stem cells ameliorate experimental murine colitis via TSP-1-dependent activation of latent TGF-beta. Dig Dis Sci 62(8):1963–1974
Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35(5):1482–1490
Tabera S, Perez-Simon JA, Diez-Campelo M, Sanchez-Abarca LI, Blanco B, Lopez A, Benito A, Ocio E, Sanchez-Guijo FM, Canizo C, San Miguel JF (2008) The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 93(9):1301–1309
Bernardo ME, Ball LM, Cometa AM, Roelofs H, Zecca M, Avanzini MA, Bertaina A, Vinti L, Lankester A, Maccario R, Ringden O, Le Blanc K, Egeler RM, Fibbe WE, Locatelli F (2011) Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant 46(2):200–207
Rasmusson I, Le Blanc K, Sundberg B, Ringden O (2007) Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol 65(4):336–343
Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S, Annunziato F (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24(2):386–398
Cho KA, Lee JK, Kim YH, Park M, Woo SY, Ryu KH (2017) Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cell Mol Immunol 14:895–908
Wagner W, Roderburg C, Wein F, Diehlmann A, Frankhauser M, Schubert R, Eckstein V, Ho AD (2007) Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells 25(10):2638–2647
Meesuk L, Tantrawatpan C, Kheolamai P, Manochantr S (2016) The immunosuppressive capacity of human mesenchymal stromal cells derived from amnion and bone marrow. Biochem Biophys Reports 8:34–40
Klinker MW, Marklein RA, Lo Surdo JL, Wei CH, Bauer SR (2017) Morphological features of IFN-gamma-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc Natl Acad Sci USA 114(13):E2598–E2607
Nold P, Hackstein H, Riedlinger T, Kasper C, Neumann A, Mernberger M, Folsch C, Schmitt J, Fuchs-Winkelmann S, Barckhausen C, Killer M, Neubauer A, Brendel C (2015) Immunosuppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation. Cytotherapy 17(2):152–162
Gornostaeva AN, Andreeva ER, Bobyleva PI, Buravkova LB (2017) Interaction of allogeneic adipose tissue-derived stromal cells and unstimulated immune cells in vitro: the impact of cell-to-cell contact and hypoxia in the local milieu. Cytotechnology 70(1):299–312
Abreu SC, Xisto DG, de Oliveira TB, Blanco NG, de Castro LL, Kitoko JZ, Olsen PC, Lopes-Pacheco M, Morales MM, Weiss DJ, Rocco PRM (2018) Serum from asthmatic mice potentiates the therapeutic effects of mesenchymal stromal cells in experimental allergic asthma. Stem Cells Transl Med 8(3):301–312
Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW (2016) Mesenchymal stem cell serived secretome and extracellular vesicles for acut lung ijury and other inflammatory lung diseases. Expert Opin Biol Ther 16(7):859–871
Hayes M, Curley GF, Masterson C, Devaney J, O'Toole D, Laffey JG (2015) Mesenchymal stromal cells are more effective than the MSC secretome in diminhising injury and enhancing recovery following ventilator-induced lung injury. Intensive Care Med Exp 3(1):29
Ferrara JL, Mevine JE, Reddy P, Holler E (2009) Graft-versus-host disease. Lancet 373(9674):1550–1561
Kim SS (2007) Treatment options in steroid-refractory acute graft-versus-host disease following hematopoietic stem cell transplantation. Ann Pharmactother 41(9):1436–1444
Le Blanc K, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J, Ljungman P, Lonnies H, Nava S, Ringdén O (2007) Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21:1733–1738
Ringdén O, Uzunel M, Rasmusson I, Temberger M, Sundberg B, Lonnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L, Le Blanc K (2006) Mesenchymal stem cells for the treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397
Ball LM, Vernardo ME, Roelofs H, van Tol MJ, Contoli B, Zwaginga JJ, Avanzini MA, Conforti A, Vertaina A, Giorgiani G, Jol-van der Zijde CM, Zecca M, Le Clanc K, Frassoni F, Egeler RM, Fibbe WE, Lankester AV, Locatelli F (2013) Multiple infusions of mesenchymal stromal cells induce remission in children with steroid-refractory, grade III-IV acute granft-verus-host disease. Br J Haematol 163(4):501–509
Wu Y, Cao Y, LiX XL, Wang Z, Liu P, Wan P, Liu Z, Wang J, Joang S, Wu X, Gao C, Da W, Han Z (2014) Cotransplantation of haploidentical hematopoietic and umbilicam cord mesenchymal stem cells for severe aplastic anemia: successful engraftment and mild GVDH. Stem Cell Res 12(1):132–138
Correale J, Gaitán MI, Ysrraelit MC, Fiol MP (2017) Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain 1140(3):527–546
Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multivel sclerosis: and open-label phase 2 a proof-of-concept study. Lancet Neurol 11(2):150–156
Hou ZL, Liu Y, Mao XH, Wei CY, Meng MY, Liu YH, Zhuyun Yang Z, Zhu Z, Short M, Bernard C, Xiao ZC (2013) Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient wit relapsing-remitting multiple sclerosis. Cell Adhes Migr 7(5):404–407
Liu Z, Davidson A (2012) Taming lupus - a new understanding of pathogenesis is leading to clinicaladvances. Nat Med 18(6):871–882
Wang D, Zhand H, Liang J, Li X, Feng X, Wand H, Hua B, Liu B, Lu L, Gilkeson GS, Silver RM, Chen W, Shi S, Sun L (2013) Allogenic mesenchymal stem cell transplantation in severe and refractory systemic lupos erythematosus: 4 years of experience. Cell Transplant 22(12):2267–2277
Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X, Hu X, Jiang S, Shi S, Sun L (2014) Unbilican cord mesenchymal stem cell transplantation in active and refractory systemic lupus eruthematosus: a multicenter clinical study. Arthritis Res Ther 16(2):R79
Lopes-Pacheco M, Xisto DG, Ornellas FM, Antunes MA, Abreu SC, Rocco PR, Takiya CM, Morales MM (2013) Repeated administration of bone marrow-derived cells prevents disease progression in experimental silicosis. Cell Phyiol Biochem 32(6):1681–1694
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
de Castro, L.L., Lopes-Pacheco, M., Weiss, D.J. et al. Current understanding of the immunosuppressive properties of mesenchymal stromal cells. J Mol Med 97, 605–618 (2019). https://doi.org/10.1007/s00109-019-01776-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00109-019-01776-y