Advertisement

Journal of Molecular Medicine

, Volume 97, Issue 6, pp 777–791 | Cite as

Beraprost sodium mitigates renal interstitial fibrosis through repairing renal microvessels

  • Shulin Li
  • Yanping Wang
  • Lu Chen
  • Zhuojun Wang
  • Guodong Liu
  • Bangjie Zuo
  • Caixia LiuEmail author
  • Dong SunEmail author
Original Article
  • 253 Downloads

Abstract

Beraprost sodium (BPS), as a prostacyclin analog, plays a significant role in various diseases based on its antiplatelet and vasodilation functions. However, its regulation and role in chronic kidney disease (CKD) still remain elusive. Here, we determined whether BPS could alleviate renal interstitial fibrosis, and improve the renal function and its therapeutic mechanism. In vitro, BPS increased angiogenesis in the HUVECs incubated with BPS detected by tube formation assay and repair damaged endothelial cell–cell junctions induced by hypoxia. In vivo, mice were randomly assigned to a sham-operation group (sham), a unilateral ureteral obstruction group (UUO), and a BPS intragastrical administration group (BPS), and sacrificed at days 3 and 7 post-surgery (six in each group). In UUO model, tissue hypoxia, renal inflammation, oxidative stress, and fibrotic lesions were detected by q-PCR and Western blot techniques and peritubular capillaries (PTCs) injury was detected by a novel technique of fluorescent microangiography (FMA) and analyzed by MATLAB software. Meanwhile, we identified cells undergoing endothelial cell-to-myofibroblast transition by the coexpression of endothelial cell (CD31) and myofibroblast (a-SMA) markers in the obstructed kidney. In contrast, BPS protected against interstitial fibrosis and substantially reduced the number of endothelial cell-to-myofibroblast transition cells. In conclusion, our data indicate the potent therapeutic of BPS in mitigating fibrosis through repairing renal microvessels and suppressing endothelial-mesenchymal transition (EndMT) progression after inhibiting inflammatory and oxidative stress effects.

Key messages

  • BPS could improve renal recovery through anti-inflammatory and anti-oxidative pathways.

  • BPS could mitigate fibrosis through repairing renal microvessels and suppressing endothelial-mesenchymal transition (EndMT).

Keywords

Beraprost sodium Peritubular capillaries Inflammation Oxidative stress Endothelial-mesenchymal transition Renal interstitial fibrosis 

Notes

Acknowledgements

This study was supported by funding from the National Natural Science Foundation of China (81270769); the Jiangsu Provincial Natural Science Foundation (BK20161172); the Jiangsu Provincial Commission of Health and Family Planning (2016103003); a project of the Jiangsu Provincial Commission of Health and Family Planning (H201628); a project of Qing Lan of Jiangsu Province; a project of “Liu Ge Yi” of Jiangsu Province (LGY2016043); the project of “Liu Da Ren Cai Gao Feng” of Jiangsu Province, China (WSN-113, 2010-WS043); the Technology Development Foundation of Kuitun City (201134); the Jiangsu Overseas Training Program for University Prominent Young and Middle-aged Teachers and Presidents; and Shi Er Wu Ke Jiao Xing Wei Key Medical Personnel of Jiangsu Province (RC2011116); a school class project of Xuzhou Medical University (2017KJ13); Municipal key research and development project of Xuzhou (KC18212); a project of Jiangsu Provincial Post Graduate Innovation Plan (KYCX17_1708, SJCX17_0560, KYCX18-2178, SJCX18_0715).

Compliance with ethical standards

Disclosures

None.

Supplementary material

109_2019_1769_MOESM1_ESM.pdf (2.4 mb)
ESM 1 (PDF 2470 kb)

References

  1. 1.
    Campanholle G, Ligresti G, Gharib SA, Duffield JS (2013) Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis. Am J Phys Cell Phys 304(7):C591–C603CrossRefGoogle Scholar
  2. 2.
    Fu H, Tian Y, Zhou L, Zhou D, Tan RJ, Stolz DB, Liu Y (2017) Tenascin-C is a major component of the fibrogenic niche in kidney fibrosis. J Am Soc Nephrol 28(3):785–801CrossRefGoogle Scholar
  3. 3.
    Ligresti G, Nagao RJ, Xue J, Choi YJ, Xu J, Ren S, Aburatani T, Anderson SK, MacDonald JW, Bammler TK, Schwartz SM, Muczynski KA, Duffield JS, Himmelfarb J, Zheng Y (2016) A novel three-dimensional human peritubular microvascular system. J Am Soc Nephrol 27(8):2370–2381CrossRefGoogle Scholar
  4. 4.
    Long DA, Norman JT, Fine LG (2012) Restoring the renal microvasculature to treat chronic kidney disease. Nat Rev Nephrol 8(4):244–250CrossRefGoogle Scholar
  5. 5.
    Ohashi R, Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Sugisaki Y, Yamanaka N (2002) Peritubular capillary regression during the progression of experimental obstructive nephropathy. J Am Soc Nephrol 13(7):1795–1805CrossRefGoogle Scholar
  6. 6.
    Babickova J, Klinkhammer BM, Buhl EM, Djudjaj S, Hoss M, Heymann F, Tacke F, Floege J, Becker JU, Boor P (2017) Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries. Kidney Int 91(1):70–85CrossRefGoogle Scholar
  7. 7.
    Li S, Zhao Y, Wang Z, Wang J, Liu C, Sun D (2018) Transplantation of amniotic fluid-derived stem cells preconditioned with glial cell line-derived neurotrophic factor gene alleviates renal fibrosis. Cell Transplant 28:963689718815850Google Scholar
  8. 8.
    Tanaka T, Nangaku M (2013) Angiogenesis and hypoxia in the kidney. Nat Rev Nephrol 9(4):211–222CrossRefGoogle Scholar
  9. 9.
    Eardley KS, Kubal C, Zehnder D, Quinkler M, Lepenies J, Savage CO, Howie AJ, Kaur K, Cooper MS, Adu D, Cockwell P (2008) The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int 74(4):495–504CrossRefGoogle Scholar
  10. 10.
    Chuang ST, Kuo YH, Su MJ (2015) KS370G, a caffeamide derivative, attenuates unilateral ureteral obstruction-induced renal fibrosis by the reduction of inflammation and oxidative stress in mice. Eur J Pharmacol 750:1–7CrossRefGoogle Scholar
  11. 11.
    Holterman CE, Read NC, Kennedy CR (2015) Nox and renal disease. Clin Sci (Lond) 128(8):465–481CrossRefGoogle Scholar
  12. 12.
    Walther CP, Navaneethan SD (2017) Inflammation as a therapeutic target to improve vascular function in kidney disease. J Am Soc Nephrol 28(3):723–725CrossRefGoogle Scholar
  13. 13.
    Xiao X, Du C, Yan Z, Shi Y, Duan H, Ren Y (2017) Inhibition of necroptosis attenuates kidney inflammation and interstitial fibrosis induced by unilateral ureteral obstruction. Am J Nephrol 46(2):131–138CrossRefGoogle Scholar
  14. 14.
    Nagaya N, Uematsu M, Okano Y, Satoh T, Kyotani S, Sakamaki F, Nakanishi N, Miyatake K, Kunieda T (1999) Effect of orally active prostacyclin analogue on survival of outpatients with primary pulmonary hypertension. J Am Coll Cardiol 34(4):1188–1192CrossRefGoogle Scholar
  15. 15.
    Matsumoto T, Iwasa K, Kyuragi R, Honma K, Guntani A, Ohmine T, Itoh H, Onohara T, Maehara Y (2010) The efficacy of oral beraprost sodium, a prostaglandin I2 analogue, for treating intermittent claudication in patients with arteriosclerosis obliterans. Int Angiol 29(2 Suppl):49–54Google Scholar
  16. 16.
    Peng L, Li J, Xu Y, Wang Y, Du H, Shao J, Liu Z (2016) The protective effect of beraprost sodium on diabetic nephropathy by inhibiting inflammation and p38 MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic rats. Int J Endocrinol 2016:1690474CrossRefGoogle Scholar
  17. 17.
    Takeshita K, Satoh M, Ii M, Silver M, Limbourg FP, Mukai Y, Rikitake Y, Radtke F, Gridley T, Losordo DW, Liao JK (2007) Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res 100(1):70–78CrossRefGoogle Scholar
  18. 18.
    Kramann R, Tanaka M, Humphreys BD (2014) Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice. J Am Soc Nephrol 25(9):1924–1931CrossRefGoogle Scholar
  19. 19.
    Lameire N, Jager K, Van Biesen W, de Bacquer D, Vanholder R (2005) Chronic kidney disease: a European perspective. Kidney Int Suppl 68(99):S30–S38CrossRefGoogle Scholar
  20. 20.
    Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X, Chen N, Zhang JE, Hu Z, Liu F, Hong D, Ma L, Liu H, Zhou X, Chen J, Pan L, Chen W, Wang W, Li X, Wang H (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379(9818):815–822CrossRefGoogle Scholar
  21. 21.
    Yokoyama C, Yabuki T, Shimonishi M, Wada M, Hatae T, Ohkawara S, Takeda J, Kinoshita T, Okabe M, Tanabe T (2002) Prostacyclin-deficient mice develop ischemic renal disorders, including nephrosclerosis and renal infarction. Circulation 106(18):2397–2403CrossRefGoogle Scholar
  22. 22.
    Sato N, Kaneko M, Tamura M, Kurumatani H (2010) The prostacyclin analog beraprost sodium ameliorates characteristics of metabolic syndrome in obese Zucker (fatty) rats. Diabetes 59(4):1092–1100CrossRefGoogle Scholar
  23. 23.
    Ballermann BJ, Obeidat M (2014) Tipping the balance from angiogenesis to fibrosis in CKD. Kidney Int Suppl (2011) 4(1):45–52CrossRefGoogle Scholar
  24. 24.
    Zafrani L, Ince C (2015) Microcirculation in acute and chronic kidney diseases. Am J Kidney Dis 66(6):1083–1094CrossRefGoogle Scholar
  25. 25.
    Watson EC, Grant ZL, Coultas L (2017) Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol Life Sci 74(24):4387–4403CrossRefGoogle Scholar
  26. 26.
    Dimmeler S, Zeiher AM (2000) Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res 87(6):434–439CrossRefGoogle Scholar
  27. 27.
    O'Riordan E, Mendelev N, Patschan S, Patschan D, Eskander J, Cohen-Gould L, Chander P, Goligorsky MS (2007) Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am J Physiol Heart Circ Physiol 292(1):H285–H294CrossRefGoogle Scholar
  28. 28.
    Otunctemur A, Ozbek E, Cakir SS, Polat EC, Dursun M, Cekmen M, Somay A, Ozbay N (2015) Pomegranate extract attenuates unilateral ureteral obstruction-induced renal damage by reducing oxidative stress. Urol Ann 7(2):166–171CrossRefGoogle Scholar
  29. 29.
    Rocha R, Funder JW (2002) The pathophysiology of aldosterone in the cardiovascular system. Ann N Y Acad Sci 970:89–100CrossRefGoogle Scholar
  30. 30.
    Chen H, Sun F, Zhong X, Shao Y, Yoshimura A, Liu Y (2013) Eplerenone-mediated aldosterone blockade prevents renal fibrosis by reducing renal inflammation, interstitial cell proliferation and oxidative stress. Kidney Blood Press Res 37(6):557–566CrossRefGoogle Scholar
  31. 31.
    Liang G, Song L, Chen Z, Qian Y, Xie J, Zhao L, Lin Q, Zhu G, Tan Y, Li X, Mohammadi M, Huang Z (2018) Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. Kidney Int 93(1):95–109CrossRefGoogle Scholar
  32. 32.
    Kolli VK, Abraham P, Rabi S (2008) Methotrexate-induced nitrosative stress may play a critical role in small intestinal damage in the rat. Arch Toxicol 82(10):763–770CrossRefGoogle Scholar
  33. 33.
    Jiang L, Qiu W, Zhou Y, Wen P, Fang L, Cao H, Zen K, He W, Zhang C, Dai C, Yang J (2013) A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-beta1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis. Kidney Int 84(2):285–296CrossRefGoogle Scholar
  34. 34.
    Chen JF, Wu QS, Xie YX, Si BL, Yang PP, Wang WY, Hua Q, He Q (2017) TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria. FASEB J 31(10):4503–4514CrossRefGoogle Scholar
  35. 35.
    Zhang S, Tan X, Chen Y, Zhang X (2017) Postconditioning protects renal fibrosis by attenuating oxidative stress-induced mitochondrial injury. Nephrol Dial Transplant 32(10):1628–1636CrossRefGoogle Scholar
  36. 36.
    Inoue E, Ichiki T, Takeda K, Matsuura H, Hashimoto T, Ikeda J, Kamiharaguchi A, Sunagawa K (2012) Beraprost sodium, a stable prostacyclin analogue, improves insulin resistance in high-fat diet-induced obese mice. J Endocrinol 213(3):285–291CrossRefGoogle Scholar
  37. 37.
    Yamada M, Sasaki R, Sato N, Suzuki M, Tamura M, Matsushita T, Kurumatani H (2002) Amelioration by beraprost sodium, a prostacyclin analogue, of established renal dysfunction in rat glomerulonephritis model. Eur J Pharmacol 449(1–2):167–176CrossRefGoogle Scholar
  38. 38.
    Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49(6):1774–1777CrossRefGoogle Scholar
  39. 39.
    Zeisberg M, Neilson EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 21(11):1819–1834CrossRefGoogle Scholar
  40. 40.
    Wei SY, Wang YX, Zhang QF, Zhao SL, Diao TT, Li JS, Qi WR, He YX, Guo XY, Zhang MZ, Chen JY, Wang XT, Wei QJ, Wang Y, Li B (2017) Multiple mechanisms are involved in salt-sensitive hypertension-induced renal injury and interstitial fibrosis. Sci Rep 7:45952CrossRefGoogle Scholar
  41. 41.
    Sun D, Eirin A, Zhu XY, Zhang X, Crane JA, Woollard JR, Lerman A, Lerman LO (2015) Experimental coronary artery stenosis accelerates kidney damage in renovascular hypertensive swine. Kidney Int 87(4):719–727CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Internal Medicine and DiagnosticsXuzhou Medical UniversityXuzhouChina
  2. 2.Department of NephrologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
  3. 3.Department of OrthopedicsThe Second Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina

Personalised recommendations