Abu el Asrar AM, Maimone D, Morse PH, Gregory S, Reder AT (1992) Cytokines in the vitreous of patients with proliferative diabetic retinopathy. Am J Ophthalmol 114(6):731–736
Article
CAS
PubMed
Google Scholar
Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30(5):343–358
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Wang S, Xia X (2012) Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Curr Eye Res 37(5):416–420
Article
CAS
PubMed
Google Scholar
Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, Grunwald JE, Toth C, Redford M, Ferris FL 3rd, Comparison of Age-related Macular Degeneration Treatments Trials Research G (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology 119(7):1388–1398
Article
PubMed
Google Scholar
Gemenetzi M, Lotery AJ, Patel PJ (2017) Risk of geographic atrophy in age-related macular degeneration patients treated with intravitreal anti-VEGF agents. Eye (Lond) 31(1):1–9
Article
CAS
Google Scholar
Grunwald JE, Daniel E, Huang J, Ying GS, Maguire MG, Toth CA, Jaffe GJ, Fine SL, Blodi B, Klein ML, Martin AA, Hagstrom SA, Martin DF, Group CR (2014) Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121(1):150–161
Article
PubMed
Google Scholar
Nishijima K, Ng YS, Zhong LC, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT (2007) Vascular endothelial growth factor-a is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171(1):53–67
Article
CAS
PubMed
PubMed Central
Google Scholar
Mori R, Power KT, Wang CHM, Martin P, Becker DL (2006) Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration. J Cell Sci 119(24):5193–5203
Article
CAS
PubMed
Google Scholar
Oviedo-Orta E, Kwak BR, Evans WH (2013) Connexin cell communication channels: roles in the immune system and immunopathology. CRC Press, Boca Raton
Book
Google Scholar
Qiu C, Coutinho P, Frank S, Franke S, Law L-y, Martin P, Green CR, Becker DL (2003) Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 13(19):1697–1703
Article
CAS
PubMed
Google Scholar
Danesh-Meyer HV, Zhang J, Acosta ML, Rupenthal ID, Green CR (2016) Connexin43 in retinal injury and disease. Prog Retin Eye Res 51:41–68
Article
CAS
PubMed
Google Scholar
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R (2017) Connexins in cardiovascular and neurovascular health and disease: pharmacological implications. Pharmacol Rev 69(4):396–478
Article
CAS
PubMed
PubMed Central
Google Scholar
Danesh-Meyer HV, Kerr NM, Zhang J, Eady EK, O'Carroll SJ, Nicholson LF, Johnson CS, Green CR (2012) Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain 135(Pt 2):506–520
Article
PubMed
Google Scholar
Willebrords J, Crespo Yanguas S, Maes M, Decrock E, Wang N, Leybaert L, Kwak BR, Green CR, Cogliati B, Vinken M (2016) Connexins and their channels in inflammation. Crit Rev Biochem Mol Biol 51(6):413–439
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett MV, Garre JM, Orellana JA, Bukauskas FF, Nedergaard M, Saez JC (2012) Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res 1487:3–15
Article
CAS
PubMed
PubMed Central
Google Scholar
Decrock E, De Bock M, Wang N, Bultynck G, Giaume C, Naus CC, Green CR, Leybaert L (2015) Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cell Mol Life Sci 72(15):2823–2851
Article
CAS
PubMed
Google Scholar
Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ (2016) Role of hemichannels in CNS inflammation and the inflammasome pathway. Adv Protein Chem Struct Biol 104:1–37
Article
CAS
PubMed
Google Scholar
De Bock M, Culot M, Wang N, Bol M, Decrock E, De Vuyst E, da Costa A, Dauwe I, Vinken M, Simon AM, Rogiers V, De Ley G, Evans WH, Bultynck G, Dupont G, Cecchelli R, Leybaert L (2011) Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood-brain barrier permeability. J Cereb Blood Flow Metab 31(9):1942–1957
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Carroll SJ, Alkadhi M, Nicholson LF, Green CR (2008) Connexin 43 mimetic peptides reduce swelling, astrogliosis, and neuronal cell death after spinal cord injury. Cell Commun Adhes 15(1):27–42
Article
CAS
PubMed
Google Scholar
Wang N, De Vuyst E, Ponsaerts R, Boengler K, Palacios-Prado N, Wauman J, Lai CP, De Bock M, Decrock E, Bol M, Vinken M, Rogiers V, Tavernier J, Evans WH, Naus CC, Bukauskas FF, Sipido KR, Heusch G, Schulz R, Bultynck G, Leybaert L (2013) Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol 108(1):309
Article
CAS
PubMed
Google Scholar
Davidson JO, Green CR, Nicholson LF, O'Carroll SJ, Fraser M, Bennet L, Gunn AJ (2012) Connexin hemichannel blockade improves outcomes in a model of fetal ischemia. Ann Neurol 71(1):121–132
Article
CAS
PubMed
Google Scholar
Galinsky R, Davidson J, Bennet L, Green C, Gunn A (2015) Connexin Hemichannel blockade improves survival of striatal neurons after perinatal cerebral Ischaemia. J Paediatr Child Health 51:60
Google Scholar
Mao Y, Tonkin RS, Nguyen T, O'Carroll SJ, Nicholson LF, Green CR, Moalem-Taylor G, Gorrie CA (2017) Systemic administration of Connexin43 mimetic peptide improves functional recovery after traumatic spinal cord injury in adult rats. J Neurotrauma 34(3):707–719
Article
PubMed
Google Scholar
O'Carroll SJ, Gorrie CA, Velamoor S, Green CR, Nicholson LF (2013) Connexin43 mimetic peptide is neuroprotective and improves function following spinal cord injury. Neurosci Res 75(3):256–267
Article
CAS
PubMed
Google Scholar
Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, Giaume C, Saez JC (2011) ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 118(5):826–840
Article
CAS
PubMed
PubMed Central
Google Scholar
Ormonde S, Chou CY, Goold L, Petsoglou C, Al-Taie R, Sherwin T, McGhee CN, Green CR (2012) Regulation of connexin43 gap junction protein triggers vascular recovery and healing in human ocular persistent epithelial defect wounds. J Membr Biol 245(7):381–388
Article
CAS
PubMed
Google Scholar
Guo CX, Mat Nor MN, Danesh-Meyer HV, Vessey KA, Fletcher EL, O'Carroll SJ, Acosta ML, Green CR (2016) Connexin43 mimetic peptide improves retinal function and reduces inflammation in a light-damaged albino rat model. Invest Ophthalmol Vis Sci 57(10):3961–3973
Article
CAS
PubMed
Google Scholar
Kim Y, Griffin JM, Harris PW, Chan SH, Nicholson LF, Brimble MA, O'Carroll SJ, Green CR (2017) Characterizing the mode of action of extracellular Connexin43 channel blocking mimetic peptides in an in vitro ischemia injury model. Biochim Biophys Acta 1861(2):68–78
Article
CAS
Google Scholar
Mugisho OO, Rupenthal ID, Squirrell DM, Bould SJ, Danesh-Meyer HV, Zhang J, Green CR, Acosta ML (2018) Intravitreal pro-inflammatory cytokines in non-obese diabetic mice: modelling signs of diabetic retinopathy. PLoS One 13(8):e0202156. https://doi.org/10.1371/journal.pone.0202156
Article
CAS
PubMed
PubMed Central
Google Scholar
Mugisho OO, Green CR, Kho DT, Zhang J, Graham ES, Acosta ML, Rupenthal ID (2018) The inflammasome pathway is amplified and perpetuated in an autocrine manner through connexin43 hemichannel mediated ATP release. Biochim Biophys Acta 1862(3):385–393
Article
CAS
Google Scholar
Mugisho OO, Green CR, Zhang J, Binz N, Acosta ML, Rakoczy E, Rupenthal ID (2017) Immunohistochemical characterization of connexin43 expression in a mouse model of diabetic retinopathy and in human donor retinas. Int J Mol Sci 18(12):2567
Article
CAS
PubMed Central
Google Scholar
Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, Kester M, Kimball SR, Krady JK, LaNoue KF, Norbury CC, Quinn PG, Sandirasegarane L, Simpson IA, Group JDRC (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55(9):2401–2411
Article
CAS
PubMed
Google Scholar
Coscas G, Lupidi M, Coscas F (2017) OCT-A: guided treatment of diabetic retinopathy. Acta Ophthalmol 95(S259)
Mizukami T, Hotta Y, Katai N (2017) Higher numbers of hyperreflective foci seen in the vitreous on spectral-domain optical coherence tomographic images in eyes with more severe diabetic retinopathy. Ophthalmologica 238(1–2):74–80
Article
PubMed
Google Scholar
Ferris FL 3rd, Patz A (1984) Macular edema. A complication of diabetic retinopathy. Surv Ophthalmol 28(Suppl):452–461
Article
PubMed
Google Scholar
Chen YS, Green CR, Wang K, Danesh-Meyer HV, Rupenthal ID (2015) Sustained intravitreal delivery of connexin43 mimetic peptide by poly(D,L-lactide-co-glycolide) acid micro- and nanoparticles--closing the gap in retinal ischaemia. Eur J Pharm Biopharm 95(Pt B):378–386
Article
CAS
PubMed
Google Scholar
Chen YS, Green CR, Teague R, Perrett J, Danesh-Meyer HV, Toth I, Rupenthal ID (2015) Intravitreal injection of lipoamino acid-modified connexin43 mimetic peptide enhances neuroprotection after retinal ischemia. Drug Deliv Transl Res 5(5):480–488
Article
CAS
PubMed
Google Scholar
Kerr NM, Johnson CS, de Souza CF, Chee KS, Good WR, Green CR, Danesh-Meyer HV (2010) Immunolocalization of gap junction protein connexin43 (GJA1) in the human retina and optic nerve. Invest Ophthalmol Vis Sci 51(8):4028–4034
Article
PubMed
Google Scholar
Simo-Servat O, Hernandez C, Simo R (2012) Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy. Mediat Inflamm 2012:872978:1–11
Article
Google Scholar
Urbancic M, Kloboves Prevodnik V, Petrovic D, Globocnik Petrovic M (2013) A flow cytometric analysis of vitreous inflammatory cells in patients with proliferative diabetic retinopathy. Biomed Res Int 2013:251528
Article
CAS
PubMed
PubMed Central
Google Scholar
Feit-Leichman RA, Kinouchi R, Takeda M, Fan Z, Mohr S, Kern TS, Chen DF (2005) Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest Ophthalmol Vis Sci 46(11):4281–4287
Article
PubMed
Google Scholar
Fletcher EL, Phipps JA, Ward MM, Puthussery T, Wilkinson-Berka JL (2007) Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr Pharm Des 13(26):2699–2712
Article
CAS
PubMed
Google Scholar
Rungger–Brändle E, Dosso AA, Leuenberger PM (2000) Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 41(7):1971–1980
PubMed
Google Scholar
El-Asrar AM (2012) Role of inflammation in the pathogenesis of diabetic retinopathy. Middle East Afr J Ophthalmol 19(1):70–74
Article
PubMed
PubMed Central
Google Scholar
Chaurasia SS, Lim RR, Parikh BH, Wey YS, Tun BB, Wong TY, Luu CD, Agrawal R, Ghosh A, Mortellaro A, Rackoczy E, Mohan RR, Barathi VA (2018) The NLRP3 Inflammasome may contribute to pathologic neovascularization in the advanced stages of diabetic retinopathy. Sci Rep 8(1):2847
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson JO, Green CR, Bennet L, Nicholson LF, Danesh-Meyer H, O'Carroll SJ, Gunn AJ (2013) A key role for connexin hemichannels in spreading ischemic brain injury. Curr Drug Targets 14(1):36–46
Article
CAS
PubMed
Google Scholar
Guo ZL, Yu SH, Chen X, Ye RD, Zhu WS, Liu XF (2016) NLRP3 is involved in ischemia/reperfusion injury. Cns Neurol Disord-Dr 15(6):699–712
Article
CAS
Google Scholar
Ildefonso CJ, Biswal MR, Ahmed CM, Lewin AS (2016) The NLRP3 Inflammasome and its role in age-related macular degeneration. In: Retinal degenerative diseases. Springer, Berlin, pp 59–65
Chapter
Google Scholar
Loukovaara S, Piippo N, Kinnunen K, Hytti M, Kaarniranta K, Kauppinen A (2017) NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy. Acta Ophthalmol 95:803–808
Article
CAS
PubMed
Google Scholar
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136–140
Article
CAS
PubMed
Google Scholar