Journal of Molecular Medicine

, Volume 96, Issue 7, pp 645–659 | Cite as

Deregulation of autophagy under hyperglycemic conditions is dependent on increased lysine 63 ubiquitination: a candidate mechanism in the progression of diabetic nephropathy

  • Paola Pontrelli
  • Annarita Oranger
  • Mariagrazia Barozzino
  • Chiara Divella
  • Francesca Conserva
  • Maria Grazia Fiore
  • Roberta Rossi
  • Massimo Papale
  • Giuseppe Castellano
  • Simona Simone
  • Luigi Laviola
  • Francesco Giorgino
  • Domenico Piscitelli
  • Anna Gallone
  • Loreto Gesualdo
Original Article


Diabetic nephropathy patients (DN) are characterized by increased lysine63 ubiquitination (Lys63-Ub) at the tubular level. Autophagy is deregulated under diabetic conditions, even though the molecular mechanisms and the consequences of this alteration need to be elucidated. The aim of this study was to investigate the link between Lys63-Ub and autophagy in DN and the involvement of these two processes in tubular cell fate. Immunohistochemistry of beclin-1, LC3, and p62 on kidney biopsies highlighted increased protein expression of all these autophagic factors at the tubular level in DN compared to other nephritis. Transmission electron microscopy confirmed the presence of diffuse vacuolization and autophago(lyso)somal structures in proximal tubular cells in DN. Accumulation of Lys63-Ub proteins in DN increased in accordance with the tubular damage and was associated to increased LC3 expression both in vivo and in vitro. Hyperglycemia (HG) induced LC3 and p62 protein expression in HK2 cells together with Lys63-ubiquitinated proteins, and the inhibition of HG-induced Lys63-Ub by NSC697923 inhibitor, significantly reduced both LC3 and p62 expression. Moreover, in DN, those tubules expressing LC3 showed increased caspase-3 expression, supporting the hypothesis that deregulated autophagy induces apoptosis of tubular cells. In vitro, we confirmed a tight association between impaired autophagy, Lys63-Ub, and apoptosis since Lys63-Ub inhibition by NSC697923 abrogated HG-induced cell death and LC3 silencing also blocked hyperglycemia-induced caspase-3 activation. Our data suggested that prolonged hyperglycemia in diabetic patients can impair autophagy as a consequence of Lys63-Ub protein accumulation, thus promoting intracellular autophagic vesicles increase, finally leading to tubular cell death in DN.

Key messages

  • In vivo autophagy is deregulated in diabetic patients with renal disease (DN).

  • Accumulation of Lys63 ubiquitinated proteins is associated to autophagy deregulation.

  • Accumulation of Lys63 ubiquitinated proteins correlated with apoptosis activation.

  • Lys63 ubiquitination inhibition abrogated hyperglycemia-induced autophagy and apoptosis.


Diabetic nephropathy Autophagy Protein ubiquitination Apoptosis 



We thank Prof. Gianfranco Gennarini, Dr. Picocci Sabrina, and Dr. Antonella Bizzoca of the Dept. of Basic Medical Sciences, Neuroscience and Sense Organs of the University of Bari Aldo Moro for the technical support with confocal microscopy. Dr. Annarita Oranger was supported from 2013 to 2015 as a PhD student in Biotecnologies of Organs transplantations by the University of Bari Aldo Moro. Dr. Mariagrazia Barozzino was supported from 2015 as a PhD student in Biotecnologies of Organs transplantations by the University of Bari Aldo Moro.


This study was supported by the Ministry of Health (Ricerca finalizzata 2009: 245/RF-2009-1470765).

Compliance with ethical standards

The study was conducted according to the last version of the Declaration of Helsinki and was approved by the local ethics committee (Prot. N.4104/2013).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4:444–452CrossRefPubMedGoogle Scholar
  2. 2.
    Kanwar YS, Sun L, Xie P, Liu FY, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fioretto P, Mauer M (2007) Histopathology of diabetic nephropathy. Semin Nephrol 27:195–207CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Slyne J, Slattery C, McMorrow T, Ryan MP (2015) New developments concerning the proximal tubule in diabetic nephropathy: in vitro models and mechanisms. Nephrol Dial Transplant 30(Suppl 4):iv60–iv67CrossRefPubMedGoogle Scholar
  5. 5.
    Gnudi L (2012) Cellular and molecular mechanisms of diabetic glomerulopathy. Nephrol Dial Transplant 27:2642–2649CrossRefPubMedGoogle Scholar
  6. 6.
    Conserva F, Pontrelli P, Accetturo M, Gesualdo L (2013) The pathogenesis of diabetic nephropathy: focus on microRNAs and proteomics. J Nephrol 26:811–820CrossRefPubMedGoogle Scholar
  7. 7.
    Pontrelli P, Conserva F, Papale M, Oranger A, Barozzino M, Vocino G, Rocchetti MT, Gigante M, Castellano G, Rossini M, Simone S, Laviola L, Giorgino F, Grandaliano G, di Paolo S, Gesualdo L (2017) Lysine 63 ubiquitination is involved in the progression of tubular damage in diabetic nephropathy. FASEB J 31:308–319CrossRefPubMedGoogle Scholar
  8. 8.
    Cybulsky AV (2013) The intersecting roles of endoplasmic reticulum stress, ubiquitin–proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int 84:25–33CrossRefPubMedGoogle Scholar
  9. 9.
    Rosenfeldt MT, Nixon C, Liu E, Mah LY, Ryan KM (2012) Analysis of macroautophagy by immunohistochemistry. Autophagy 8:963–969CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ding Y, Choi ME (2015) Autophagy in diabetic nephropathy. J Endocrinol 224:R15–R30CrossRefPubMedGoogle Scholar
  12. 12.
    Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163CrossRefPubMedGoogle Scholar
  13. 13.
    Bentall RP, Thompson M (1990) Emotional Stroop performance and the manic defence. Br J Clin Psychol 29(Pt 2):235–237CrossRefPubMedGoogle Scholar
  14. 14.
    Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N, Walz G, Huber TB (2012) Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8:826–837CrossRefPubMedGoogle Scholar
  15. 15.
    Yamahara K, Yasuda M, Kume S, Koya D, Maegawa H, Uzu T (2013) The role of autophagy in the pathogenesis of diabetic nephropathy. J Diabetes Res 2013:193757CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fiorentino L, Cavalera M, Menini S, Marchetti V, Mavilio M, Fabrizi M, Conserva F, Casagrande V, Menghini R, Pontrelli P et al (2013) Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Mol Med 5:441–455CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ryter SW, Mizumura K, Choi AM (2014) The impact of autophagy on cell death modalities. Int J Cell Biol 2014:502676–502612CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E et al (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21:556–563CrossRefPubMedGoogle Scholar
  19. 19.
    Pulvino M, Liang Y, Oleksyn D, DeRan M, Van Pelt E, Shapiro J, Sanz I, Chen L, Zhao J (2012) Inhibition of proliferation and survival of diffuse large B-cell lymphoma cells by a small-molecule inhibitor of the ubiquitin-conjugating enzyme Ubc13-Uev1A. Blood 120:1668–1677CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dagda RK, Zhu J, Kulich SM, Chu CT (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy 4:770–782CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chu CT, Plowey ED, Dagda RK, Hickey RW, Cherra SJ 3rd, Clark RS (2009) Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models. Methods Enzymol 453:217–249CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xu Y, Yuan J, Lipinski MM (2013) Live imaging and single-cell analysis reveal differential dynamics of autophagy and apoptosis. Autophagy 9:1418–1430CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16:345–357CrossRefPubMedGoogle Scholar
  24. 24.
    Wang Z, Choi ME (2014) Autophagy in kidney health and disease. Antioxid Redox Signal 20:519–537CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yerra VG, Gundu C, Bachewal P, Kumar A (2016) Autophagy: the missing link in diabetic neuropathy? Med Hypotheses 86:120–128CrossRefPubMedGoogle Scholar
  26. 26.
    Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP, Ho MW, Troncoso J, Gygi SP, Lee MK et al (2008) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17:431–439CrossRefPubMedGoogle Scholar
  27. 27.
    Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC, Rieg T (2013) Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol 304:F156–F167CrossRefPubMedGoogle Scholar
  28. 28.
    Kitada M, Takeda A, Nagai T, Ito H, Kanasaki K, Koya D (2011) Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res 2011:908185CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    RostamiRad A, SSS E, Sadeghi A, Taghikhani M, Meshkani R (2018) Palmitate-induced impairment of autophagy turnover leads to increased apoptosis and inflammation in peripheral blood mononuclear cells. Immunobiology 223:269–278CrossRefPubMedGoogle Scholar
  30. 30.
    Yamahara K, Kume S, Koya D, Tanaka Y, Morita Y, Chin-Kanasaki M, Araki H, Isshiki K, Araki S, Haneda M et al (2013) Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J Am Soc Nephrol 24:1769–1781CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chen ZJ (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7:758–765CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chin LS, Olzmann JA, Li L (2010) Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem Soc Trans 38:144–149CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–376CrossRefPubMedGoogle Scholar
  35. 35.
    Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A et al (2012) Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8:1009–1031CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xu Y, Liu L, Xin W, Zhao X, Chen L, Zhen J, Wan Q (2015) The renoprotective role of autophagy activation in proximal tubular epithelial cells in diabetic nephropathy. J Diabetes Complicat 29:976–983CrossRefPubMedGoogle Scholar
  37. 37.
    Havasi A, Dong Z (2016) Autophagy and tubular cell death in the kidney. Semin Nephrol 36:174–188CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kaushal GP (2012) Autophagy protects proximal tubular cells from injury and apoptosis. Kidney Int 82:1250–1253CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Meng Y, Ji J, Tan W, Guo G, Xia Y, Cheng C, Gu Z, Wang Z (2016) Involvement of autophagy in the procedure of endoplasmic reticulum stress introduced apoptosis in bone marrow mesenchymal stem cells from nonobese diabetic mice. Cell Biochem Funct 34:25–33CrossRefPubMedGoogle Scholar
  40. 40.
    Wang XY, Li S, Wang G, Ma ZL, Chuai M, Cao L, Yang X (2015) High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo. Sci Rep 5:18321CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paola Pontrelli
    • 1
  • Annarita Oranger
    • 1
  • Mariagrazia Barozzino
    • 1
  • Chiara Divella
    • 1
  • Francesca Conserva
    • 1
  • Maria Grazia Fiore
    • 2
  • Roberta Rossi
    • 2
  • Massimo Papale
    • 1
  • Giuseppe Castellano
    • 1
  • Simona Simone
    • 1
  • Luigi Laviola
    • 3
  • Francesco Giorgino
    • 3
  • Domenico Piscitelli
    • 2
  • Anna Gallone
    • 4
  • Loreto Gesualdo
    • 1
  1. 1.Department of Emergency and Organ Transplantation - Division of NephrologyUniversity of Bari Aldo MoroBariItaly
  2. 2.Department of Emergency and Organ Transplantation - Division of Pathological AnatomyUniversity of Bari Aldo MoroBariItaly
  3. 3.Department of Emergency and Organ Transplantation - Division of EndocrinologyUniversity of Bari Aldo MoroBariItaly
  4. 4.Department of Basic Medical Sciences, Neurosciences and Sense Organs - Division of Applied BiologyUniversity of Bari Aldo MoroBariItaly

Personalised recommendations