Skip to main content
Log in

Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

There is growing evidence that putative gene regulatory networks including cardio-enriched transcription factors, such as PITX2, TBX5, ZFHX3, and SHOX2, and their effector/target genes along with downstream non-coding RNAs can play a potentially important role in the process of adaptive and maladaptive atrial rhythm remodeling. In turn, expression of atrial fibrillation-associated transcription factors is under the control of upstream regulatory non-coding RNAs. This review broadly explores gene regulatory mechanisms associated with susceptibility to atrial fibrillation—with key examples from both animal models and patients—within the context of both cardiac transcription factors and non-coding RNAs. These two systems appear to have multiple levels of cross-regulation and act coordinately to achieve effective control of atrial rhythm effector gene expression. Perturbations of a dynamic expression balance between transcription factors and corresponding non-coding RNAs can provoke the development or promote the progression of atrial fibrillation. We also outline deficiencies in current models and discuss ongoing studies to clarify remaining mechanistic questions. An understanding of the function of transcription factors and non-coding RNAs in gene regulatory networks associated with atrial fibrillation risk will enable the development of innovative therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nattel S, Dobrev D (2016) Electrophysiological and molecular mechanisms of paroxysmal atrial fibrillation. Nat Rev Cardiol 13:575–590

    Article  PubMed  CAS  Google Scholar 

  2. Franco D, Lozano-Velasco E, Aranega A (2016) Gene regulatory networks in atrial fibrillation. World J Med Gen 6(1):16

    Google Scholar 

  3. Gutierrez A, Chung MK (2016) Genomics of atrial fibrillation. Curr Cardiol Rep 18:e55

    Article  Google Scholar 

  4. Hayashi K, Tada H, Yamagishi M (2017) The genetics of atrial fibrillation. Curr Opin Cardiol 32:10–16

    Article  PubMed  Google Scholar 

  5. Christophersen IE, Rienstra M, Roselli C, Yin X, Geelhoed B, Barnard J, Lin H, Arking DE, Smith AV, Albert CM, Chaffin M, Tucker NR, Li M, Klarin D, Bihlmeyer NA, Low SK, Weeke PE, Muller-Nurasyid M, Smith JG, Brody JA, Niemeijer MN, Dorr M, Trompet S, Huffman J, Gustafsson S, Schurmann C, Kleber ME, Lyytikainen LP, Seppala I, Malik R, Horimoto A, Perez M, Sinisalo J, Aeschbacher S, Theriault S, Yao J, Radmanesh F, Weiss S, Teumer A, Choi SH, Weng LC, Clauss S, Deo R, Rader DJ, Shah SH, Sun A, Hopewell JC, Debette S, Chauhan G, Yang Q, Worrall BB, Pare G, Kamatani Y, Hagemeijer YP, Verweij N, Siland JE, Kubo M, Smith JD, Van Wagoner DR, Bis JC, Perz S, Psaty BM, Ridker PM, Magnani JW, Harris TB, Launer LJ, Shoemaker MB, Padmanabhan S, Haessler J, Bartz TM, Waldenberger M, Lichtner P, Arendt M, Krieger JE, Kahonen M, Risch L, Mansur AJ, Peters A, Smith BH, Lind L, Scott SA, Lu Y, Bottinger EB, Hernesniemi J, Lindgren CM, Wong JA, Huang J, Eskola M, Morris AP, Ford I, Reiner AP, Delgado G, Chen LY, Chen YI, Sandhu RK, Boerwinkle E, Eisele L, Lannfelt L, Rost N, Anderson CD, Taylor KD, Campbell A, Magnusson PK, Porteous D, Hocking LJ, Vlachopoulou E, Pedersen NL, Nikus K, Orho-Melander M, Hamsten A, Heeringa J, Denny JC, Kriebel J, Darbar D, Newton-Cheh C, Shaffer C, Macfarlane PW, Heilmann-Heimbach S, Almgren P, Huang PL, Sotoodehnia N, Soliman EZ, Uitterlinden AG, Hofman A, Franco OH, Volker U, Jockel KH, Sinner MF, Lin HJ, Guo X, Dichgans M, Ingelsson E, Kooperberg C, Melander O, Loos RJF, Laurikka J, Conen D, Rosand J, van der Harst P, Lokki ML, Kathiresan S, Pereira A, Jukema JW, Hayward C, Rotter JI, Marz W, Lehtimaki T, Stricker BH, Chung MK, Felix SB, Gudnason V, Alonso A, Roden DM, Kaab S, Chasman DI, Heckbert SR, Benjamin EJ, Tanaka T, Lunetta KL, Lubitz SA, Ellinor PT (2017) Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat Genet 49:946–952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hsu J, Gore-Panter S, Tchou G, Castel L, Lovano B, Moravec CS, Pettersson GB, Roselli EE, Gillinov AM, McCurry KR, Smedira NG, Barnard J, Van Wagoner DR, Chung MK, Smith JD (2018) Genetic control of left atrial gene expression yields insights into the genetic susceptibility for atrial fibrillation. Circ Genom Precis Med 11:e002107

    PubMed  CAS  Google Scholar 

  7. Kataoka M, Wang DZ (2014) Non-coding RNAs including miRNAs and lncRNAs in cardiovascular biology and disease. Cell 3:883–898

    Article  CAS  Google Scholar 

  8. Thum T, Condorelli G (2015) Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res 116:751–762

    Article  PubMed  CAS  Google Scholar 

  9. Beermann J, Piccoli MT, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96:1297–1325

    Article  PubMed  CAS  Google Scholar 

  10. Tao H, Shi KH, Yang JJ, Li J (2016) Epigenetic mechanisms in atrial fibrillation: new insights and future directions. Trends Cardiovasc Med 26:306–318

    Article  PubMed  CAS  Google Scholar 

  11. Molina CE, Voigt N (2017) Finding Ms or Mr Right: which miRNA to target in AF? J Mol Cell Cardiol 102:22–25

    Article  PubMed  CAS  Google Scholar 

  12. van den Berg NWE, Kawasaki M, Berger WR, Neefs J, Meulendijks E, Tijsen AJ, de Groot JR (2017) MicroRNAs in atrial fibrillation: from expression signatures to functional implications. Cardiovasc Drugs Ther 31:345–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Su Y, Li L, Zhao S, Yue Y, Yang S (2018) The long noncoding RNA expression profiles of paroxysmal atrial fibrillation identified by microarray analysis. Gene 642:125–134

    Article  PubMed  CAS  Google Scholar 

  14. Li Z, Wang X, Wang W, Du J, Wei J, Zhang Y, Wang J, Hou Y (2017) Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. J Mol Cell Cardiol 108:73–85

    Article  PubMed  CAS  Google Scholar 

  15. Mauro VD, Barandalla-Sobrados M, Catalucci D (2018) The noncoding-RNA landscape in cardiovascular health and disease. Non-coding RNA Res 3:12–19

    Article  Google Scholar 

  16. Deshmukh A, Barnard J, Sun H, Newton D, Castel L, Pettersson G, Johnston D, Roselli E, Gillinov AM, McCurry K, Moravec C, Smith JD, Van Wagoner DR, Chung MK (2015) Left atrial transcriptional changes associated with atrial fibrillation susceptibility and persistence. Circ Arrhythm Electrophysiol 8:32–41

    Article  PubMed  CAS  Google Scholar 

  17. Torrado M, Franco D, Lozano-Velasco E, Hernandez-Torres F, Calvino R, Aldama G, Centeno A, Castro-Beiras A, Mikhailov A (2015) A microRNA-transcription factor blueprint for early atrial arrhythmogenic remodeling. Biomed Res Int 2015:e263151

    Article  CAS  Google Scholar 

  18. Staerk L, Sherer JA, Ko D, Benjamin EJ, Helm RH (2017) Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circ Res 120:1501–1517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hasebe H, Yoshida K, Iida M, Hatano N, Muramatsu T, Aonuma K (2016) Right-to-left frequency gradient during atrial fibrillation initiated by right atrial ectopies and its augmentation by adenosine triphosphate: implications of right atrial fibrillation. Heart Rhythm 13:354–363

    Article  PubMed  Google Scholar 

  20. Di Biase L, Burkhardt JD, Mohanty P, Sanchez J, Mohanty S, Horton R, Gallinghouse GJ, Bailey SM, Zagrodzky JD, Santangeli P, Hao S, Hongo R, Beheiry S, Themistoclakis S, Bonso A, Rossillo A, Corrado A, Raviele A, Al-Ahmad A, Wang P, Cummings JE, Schweikert RA, Pelargonio G, Dello Russo A, Casella M, Santarelli P, Lewis WR, Natale A (2010) Left atrial appendage: an underrecognized trigger site of atrial fibrillation. Circulation 122:109–118

    Article  PubMed  Google Scholar 

  21. Burnett LA, Kocheril AG (2014) Putative role of right atrial ablation in atrial fibrillation. J Atr Fibrillation 6:e1085

    Google Scholar 

  22. Krummen DE, Hebsur S, Salcedo J, Narayan SM, Lalani GG, Schricker AA (2015) Mechanisms underlying AF: triggers, rotors, other? Curr Treat Options Cardiovasc Med 17:e371

    Article  Google Scholar 

  23. Kahr PC, Piccini I, Fabritz L, Greber B, Scholer H, Scheld HH, Hoffmeier A, Brown NA, Kirchhof P (2011) Systematic analysis of gene expression differences between left and right atria in different mouse strains and in human atrial tissue. PLoS One 6:e26389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hsu J, Hanna P, Van Wagoner DR, Barnard J, Serre D, Chung MK, Smith JD (2012) Whole genome expression differences in human left and right atria ascertained by RNA sequencing. Circ Cardiovasc Genet 5:327–335

    Article  PubMed  CAS  Google Scholar 

  25. Lin H, Dolmatova EV, Morley MP, Lunetta KL, McManus DD, Magnani JW, Margulies KB, Hakonarson H, del Monte F, Benjamin EJ, Cappola TP, Ellinor PT (2014) Gene expression and genetic variation in human atria. Heart Rhythm 11:266–271

    Article  PubMed  Google Scholar 

  26. Slagsvold KH, Johnsen AB, Rognmo O, Hoydal M, Wisloff U, Wahba A (2014) Comparison of left versus right atrial myocardium in patients with sinus rhythm or atrial fibrillation—an assessment of mitochondrial function and microRNA expression. Physiol Rep 2:e12124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cooley N, Cowley MJ, Lin RC, Marasco S, Wong C, Kaye DM, Dart AM, Woodcock EA (2012) Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease. Physiol Genomics 44:211–219

    Article  PubMed  CAS  Google Scholar 

  28. Hatem SN, Redheuil A, Gandjbakhch E (2016) Cardiac adipose tissue and atrial fibrillation: the perils of adiposity. Cardiovasc Res 109:502–509

    Article  PubMed  CAS  Google Scholar 

  29. Suffee N, Moore-Morris T, Farahmand P, Rucker-Martin C, Dilanian G, Fradet M, Sawaki D, Derumeaux G, LePrince P, Clement K, Dugail I, Puceat M, Hatem SN (2017) Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria. Proc Natl Acad Sci U S A 114:E771–E780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zangi L, Oliveira MS, Ye LY, Ma Q, Sultana N, Hadas Y, Chepurko E, Spater D, Zhou B, Chew WL, Ebina W, Abrial M, Wang QD, Pu WT, Chien KR (2017) Insulin-like growth factor 1 receptor-dependent pathway drives epicardial adipose tissue formation after myocardial injury. Circulation 135:59–72

    Article  PubMed  CAS  Google Scholar 

  31. Kirchhof P, Kahr PC, Kaese S, Piccini I, Vokshi I, Scheld HH, Rotering H, Fortmueller L, Laakmann S, Verheule S, Schotten U, Fabritz L, Brown NA (2011) PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet 4:123–133

    Article  PubMed  CAS  Google Scholar 

  32. Torrado M, Franco D, Hernandez-Torres F, Crespo-Leiro MG, Iglesias-Gil C, Castro-Beiras A, Mikhailov AT (2014) Pitx2c is reactivated in the failing myocardium and stimulates myf5 expression in cultured cardiomyocytes. PLoS One 9:e90561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gore-Panter SR, Hsu J, Hanna P, Gillinov AM, Pettersson G, Newton DW, Moravec CS, Van Wagoner DR, Chung MK, Barnard J, Smith JD (2014) Atrial fibrillation associated chromosome 4q25 variants are not associated with PITX2c expression in human adult left atrial appendages. PLoS One 9:e86245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Campione M, Franco D (2016) Current perspectives in cardiac laterality. J Cardiovasc Dev Dis 3(4):34. https://doi.org/10.3390/jcdd3040034

    Article  PubMed Central  Google Scholar 

  35. Franco D, Sedmera D, Lozano-Velasco E (2017) Multiple roles of Pitx2 in cardiac development and disease. J Cardiovasc Dev Dis 4(4):16. https://doi.org/10.3390/jcdd4040016

    Article  PubMed Central  CAS  Google Scholar 

  36. Mommersteeg MT, Hoogaars WM, Prall OW, de Gier-de Vries C, Wiese C, Clout DE, Papaioannou VE, Brown NA, Harvey RP, Moorman AF, Christoffels VM (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100:354–362

    Article  PubMed  CAS  Google Scholar 

  37. Wu MH, Wang JK, Lin JL, Lai LP, Lue HC, Young ML, Hsieh FJ (1998) Supraventricular tachycardia in patients with right atrial isomerism. J Am Coll Cardiol 32:773–779

    Article  PubMed  CAS  Google Scholar 

  38. Syeda F, Kirchhof P, Fabritz L (2017) PITX2-dependent gene regulation in atrial fibrillation and rhythm control. J Physiol 595:4019–4026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mommersteeg MT, Brown NA, Prall OW, de Gier-de Vries C, Harvey RP, Moorman AF, Christoffels VM (2007) Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res 101:902–909

    Article  PubMed  CAS  Google Scholar 

  40. Lubitz SA, Lunetta KL, Lin H, Arking DE, Trompet S, Li G, Krijthe BP, Chasman DI, Barnard J, Kleber ME, Dorr M, Ozaki K, Smith AV, Muller-Nurasyid M, Walter S, Agarwal SK, Bis JC, Brody JA, Chen LY, Everett BM, Ford I, Franco OH, Harris TB, Hofman A, Kaab S, Mahida S, Kathiresan S, Kubo M, Launer LJ, MacFarlane PW, Magnani JW, McKnight B, McManus DD, Peters A, Psaty BM, Rose LM, Rotter JI, Silbernagel G, Smith JD, Sotoodehnia N, Stott DJ, Taylor KD, Tomaschitz A, Tsunoda T, Uitterlinden AG, Van Wagoner DR, Volker U, Volzke H, Murabito JM, Sinner MF, Gudnason V, Felix SB, Marz W, Chung M, Albert CM, Stricker BH, Tanaka T, Heckbert SR, Jukema JW, Alonso A, Benjamin EJ, Ellinor PT (2014) Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. J Am Coll Cardiol 63:1200–1210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ye J, Tucker NR, Weng LC, Clauss S, Lubitz SA, Ellinor PT (2016) A functional variant associated with atrial fibrillation regulates PITX2c expression through TFAP2a. Am J Hum Genet 99:1281–1291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang J, Zhang DF, Sun YM, Yang YQ (2014) A novel PITX2c loss-of-function mutation associated with familial atrial fibrillation. Eur J Med Genet 57:25–31

    Article  PubMed  CAS  Google Scholar 

  43. Tsai CT, Hsieh CS, Chang SN, Chuang EY, Juang JM, Lin LY, Lai LP, Hwang JJ, Chiang FT, Lin JL (2015) Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation. J Med Genet 52:28–36

    Article  PubMed  CAS  Google Scholar 

  44. Wang J, Klysik E, Sood S, Johnson RL, Wehrens XH, Martin JF (2010) Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc Natl Acad Sci U S A 107:9753–9758

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chinchilla A, Daimi H, Lozano-Velasco E, Dominguez JN, Caballero R, Delpon E, Tamargo J, Cinca J, Hove-Madsen L, Aranega AE, Franco D (2011) PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet 4:269–279

    Article  PubMed  CAS  Google Scholar 

  46. Lozano-Velasco E, Hernandez-Torres F, Daimi H, Serra SA, Herraiz A, Hove-Madsen L, Aranega A, Franco D (2016) Pitx2 impairs calcium handling in a dose-dependent manner by modulating Wnt signalling. Cardiovasc Res 109:55–66

    Article  PubMed  CAS  Google Scholar 

  47. Tao Y, Zhang M, Li L, Bai Y, Zhou Y, Moon AM, Kaminski HJ, Martin JF (2014) Pitx2, an atrial fibrillation predisposition gene, directly regulates ion transport and intercalated disc genes. Circ Cardiovasc Genet 7:23–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Scridon A, Fouilloux-Meugnier E, Loizon E, Rome S, Julien C, Barres C, Chevalier P (2014) Long-standing arterial hypertension is associated with Pitx2 down-regulation in a rat model of spontaneous atrial tachyarrhythmias. Europace 17:160–165

    Article  PubMed  Google Scholar 

  49. Kao YH, Hsu JC, Chen YC, Lin YK, Lkhagva B, Chen SA, Chen YJ (2016) ZFHX3 knockdown increases arrhythmogenesis and dysregulates calcium homeostasis in HL-1 atrial myocytes. Int J Cardiol 210:85–92

    Article  PubMed  Google Scholar 

  50. Perez-Hernandez M, Matamoros M, Barana A, Amoros I, Gomez R, Nunez M, Sacristan S, Pinto A, Fernandez-Aviles F, Tamargo J, Delpon E, Caballero R (2016) Pitx2c increases in atrial myocytes from chronic atrial fibrillation patients enhancing IKs and decreasing ICa,L. Cardiovasc Res 109:431–441

    Article  PubMed  CAS  Google Scholar 

  51. Doñate Puertas R, Meugnier E, Romestaing C, Rey C, Morel E, Lachuer J, Gadot N, Scridon A, Julien C, Tronc F, Chapuis B, Valla C, Janin A, Pirola L, Méjat A, Rome S, Chevalier P (2017) Atrial fibrillation is associated with hypermethylation in human left atrium, and treatment with decitabine reduces atrial tachyarrhythmias in spontaneously hypertensive rats. Transl Res 184:57–67

    Article  PubMed  CAS  Google Scholar 

  52. Syeda F, Holmes AP, Yu TY, Tull S, Kuhlmann SM, Pavlovic D, Betney D, Riley G, Kucera JP, Jousset F, de Groot JR, Rohr S, Brown NA, Fabritz L, Kirchhof P (2016) PITX2 modulates atrial membrane potential and the antiarrhythmic effects of sodium-channel blockers. J Am Coll Cardiol 68:1881–1894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Martin RI, Babaei MS, Choy MK, Owens WA, Chico TJ, Keenan D, Yonan N, Koref MS, Keavney BD (2015) Genetic variants associated with risk of atrial fibrillation regulate expression of PITX2, CAV1, MYOZ1, C9orf3 and FANCC. J Mol Cell Cardiol 85:207–214

    Article  PubMed  CAS  Google Scholar 

  54. Li N, Dobrev D, Wehrens XH (2016) PITX2: a master regulator of cardiac channelopathy in atrial fibrillation? Cardiovasc Res 109:345–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wang J, Bai Y, Li N, Ye W, Zhang M, Greene SB, Tao Y, Chen Y, Wehrens XH, Martin JF (2014) Pitx2-microRNA pathway that delimits sinoatrial node development and inhibits predisposition to atrial fibrillation. Proc Natl Acad Sci U S A 111:9181–9186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Santulli G, Iaccarino G, De Luca N, Trimarco B, Condorelli G (2014) Atrial fibrillation and microRNAs. Front Physiol 5:e15

    Article  Google Scholar 

  57. Adam O, Lohfelm B, Thum T, Gupta SK, Puhl SL, Schafers HJ, Bohm M, Laufs U (2012) Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol 107:e278

    Article  CAS  Google Scholar 

  58. Barana A, Matamoros M, Dolz-Gaiton P, Perez-Hernandez M, Amoros I, Nunez M, Sacristan S, Pedraz A, Pinto A, Fernandez-Aviles F, Tamargo J, Delpon E, Caballero R (2014) Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current. Circ Arrhythm Electrophysiol 7:861–868

    Article  PubMed  CAS  Google Scholar 

  59. McManus DD, Tanriverdi K, Lin H, Esa N, Kinno M, Mandapati D, Tam S, Okike ON, Ellinor PT, Keaney JF Jr, Donahue JK, Benjamin EJ, Freedman JE (2015) Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the miRhythm study). Heart Rhythm 12:3–10

    Article  PubMed  Google Scholar 

  60. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491

    Article  PubMed  CAS  Google Scholar 

  61. Girmatsion Z, Biliczki P, Bonauer A, Wimmer-Greinecker G, Scherer M, Moritz A, Bukowska A, Goette A, Nattel S, Hohnloser SH, Ehrlich JR (2009) Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm 6:1802–1809

    Article  PubMed  Google Scholar 

  62. Lozano-Velasco E, Wangensteen R, Quesada A, Garcia-Padilla C, Osorio JA, Ruiz-Torres MD, Aranega A, Franco D (2017) Hyperthyroidism, but not hypertension, impairs PITX2 expression leading to Wnt-microRNA-ion channel remodeling. PLoS One 12:e0188473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhao Y, Yuan Y, Qiu C (2016) Underexpression of CACNA1C caused by overexpression of microRNA-29a underlies the pathogenesis of atrial fibrillation. Med Sci Monit 22:2175–2181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Xu Y, Huang R, Gu J, Jiang W (2016) Identification of long non-coding RNAs as novel biomarker and potential therapeutic target for atrial fibrillation in old adults. Oncotarget 7:10803–10811

    PubMed  PubMed Central  Google Scholar 

  65. Gore-Panter SR, Hsu J, Barnard J, Moravec CS, Van Wagoner DR, Chung MK, Smith JD (2016) PANCR, the PITX2 adjacent noncoding RNA, is expressed in human left atria and regulates PITX2c expression. Circ Arrhythm Electrophysiol 9:e003197

    Article  PubMed  CAS  Google Scholar 

  66. Hatcher CJ, Goldstein MM, Mah CS, Delia CS, Basson CT (2000) Identification and localization of TBX5 transcription factor during human cardiac morphogenesis. Dev Dyn 219:90–95

    Article  PubMed  CAS  Google Scholar 

  67. Georges R, Nemer G, Morin M, Lefebvre C, Nemer M (2008) Distinct expression and function of alternatively spliced Tbx5 isoforms in cell growth and differentiation. Mol Cell Biol 28:4052–4067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Zhu T, Qiao L, Wang Q, Mi R, Chen J, Lu Y, Gu J, Zheng Q (2017) T-box family of transcription factor-TBX5, insights in development and disease. Am J Transl Res 9:442–453

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Mori AD, Zhu Y, Vahora I, Nieman B, Koshiba-Takeuchi K, Davidson L, Pizard A, Seidman JG, Seidman CE, Chen XJ, Henkelman RM, Bruneau BG (2006) Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev Biol 297:566–586

    Article  PubMed  CAS  Google Scholar 

  70. Tan N, Chung MK, Smith JD, Hsu J, Serre D, Newton DW, Castel L, Soltesz E, Pettersson G, Gillinov AM, Van Wagoner DR, Barnard J (2013) Weighted gene coexpression network analysis of human left atrial tissue identifies gene modules associated with atrial fibrillation. Circ Cardiovasc Genet 6:362–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Karakikes I, Termglinchan V, Cepeda DA, Lee J, Diecke S, Hendel A, Itzhaki I, Ameen M, Shrestha R, Wu H, Ma N, Shao NY, Seeger T, Woo N, Wilson KD, Matsa E, Porteus MH, Sebastiano V, Wu JC (2017) A comprehensive TALEN-based knockout library for generating human-induced pluripotent stem cell-based models for cardiovascular diseases. Circ Res 120:1561–1571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Postma AV, van de Meerakker JB, Mathijssen IB, Barnett P, Christoffels VM, Ilgun A, Lam J, Wilde AA, Lekanne Deprez RH, Moorman AF (2008) A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 102:1433–1442

    Article  PubMed  CAS  Google Scholar 

  73. Ma JF, Yang F, Mahida SN, Zhao L, Chen X, Zhang ML, Sun Z, Yao Y, Zhang YX, Zheng GY, Dong J, Feng MJ, Zhang R, Sun J, Li S, Wang QS, Cao H, Benjamin EJ, Ellinor PT, Li YG, Tian XL (2016) TBX5 mutations contribute to early-onset atrial fibrillation in Chinese and Caucasians. Cardiovasc Res 109:442–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Guo DF, Li RG, Yuan F, Shi HY, Hou XM, Qu XK, Xu YJ, Zhang M, Liu X, Jiang JQ, Yang YQ, Qiu XB (2016) TBX5 loss-of-function mutation contributes to atrial fibrillation and atypical Holt-Oram syndrome. Mol Med Rep 13:4349–4356

    Article  PubMed  CAS  Google Scholar 

  75. Wang ZC, Ji WH, Ruan CW, Liu XY, Qiu XB, Yuan F, Li RG, Xu YJ, Liu X, Huang RT, Xue S, Yang YQ (2016) Prevalence and spectrum of TBX5 mutation in patients with lone atrial fibrillation. Int J Med Sci 13:60–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, Stefansdottir H, Gudjonsson SA, Jonasdottir A, Mathiesen EB, Njolstad I, Nyrnes A, Wilsgaard T, Hald EM, Hveem K, Stoltenberg C, Lochen ML, Kong A, Thorsteinsdottir U, Stefansson K (2010) Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet 42:117–122

    Article  PubMed  CAS  Google Scholar 

  77. Zhang R, Tian X, Gao L, Li H, Yin X, Dong Y, Yang Y, Xia Y (2016) Common variants in the TBX5 gene associated with atrial fibrillation in a Chinese Han population. PLoS One 11:e0160467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Nadadur RD, Broman MT, Boukens B, Mazurek SR, Yang X, van den Boogaard M, Bekeny J, Gadek M, Ward T, Zhang M, Qiao Y, Martin JF, Seidman CE, Seidman J, Christoffels V, Efimov IR, McNally EM, Weber CR, Moskowitz IP (2016) Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm. Sci Transl Med 8:e354ra115

    Article  CAS  Google Scholar 

  79. Lozano-Velasco E, Chinchilla A, Martinez-Fernandez S, Hernandez-Torres F, Navarro F, Lyons GE, Franco D, Aranega AE (2011) Pitx2c modulates cardiac-specific transcription factors networks in differentiating cardiomyocytes from murine embryonic stem cells. Cells Tissues Organs 194:349–362

    Article  PubMed  CAS  Google Scholar 

  80. D’Aurizio R, Russo F, Chiavacci E, Baumgart M, Groth M, D’Onofrio M, Arisi I, Rainaldi G, Pitto L, Pellegrini M (2016) Discovering miRNA regulatory networks in Holt-Oram syndrome using a zebrafish model. Front Bioeng Biotechnol 4:e60

    Article  Google Scholar 

  81. Chiavacci E, Dolfi L, Verduci L, Meghini F, Gestri G, Evangelista AM, Wilson SW, Cremisi F, Pitto L (2012) MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development. PLoS One 7:e50536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chiang DY, Zhang M, Voigt N, Alsina KM, Jakob H, Martin JF, Dobrev D, Wehrens XH, Li N (2015) Identification of microRNA-mRNA dysregulations in paroxysmal atrial fibrillation. Int J Cardiol 184C:190–197

    Article  Google Scholar 

  83. Wang J, Song S, Xie C, Han J, Li Y, Shi J, Xin M, Luo T, Meng X, Yang B (2015) MicroRNA profiling in the left atrium in patients with non-valvular paroxysmal atrial fibrillation. BMC Cardiovasc Disord 15:e97

    Article  CAS  Google Scholar 

  84. Wang F, Yang XY, Zhao JY, Yu LW, Zhang P, Duan WY, Chong M, Gui YH (2014) miR-10a and miR-10b target the 3′-untranslated region of TBX5 to repress its expression. Pediatr Cardiol 35:1072–1079

    Article  PubMed  Google Scholar 

  85. Vaze A, Donahue K, Spring M, Sardana M, Tanriverdi K, Freedman JE, Keaney JF, Benjamin EJ, Lubitz SA, Rosenthal L, Floyd K, McManus DD (2017) Plasma microRNAs relate to atrial fibrillation recurrence after catheter ablation: longitudinal findings from the MiRhythm study. J Clin Exp Cardiol 8:502

    Article  CAS  Google Scholar 

  86. Yang XH, Nadadur RD, Hilvering CR, Bianchi V, Werner M, Mazurek SR, Gadek M, Shen KM, Goldman JA, Tyan L, Bekeny J, Hall JM, Lee N, Perez-Cervantes C, Burnicka-Turek O, Poss KD, Weber CR, de Laat W, Ruthenburg AJ, Moskowitz IP (2017) Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm. Elife 6:e.31683

    Article  Google Scholar 

  87. Berry FB, Miura Y, Mihara K, Kaspar P, Sakata N, Hashimoto-Tamaoki T, Tamaoki T (2001) Positive and negative regulation of myogenic differentiation of C2C12 cells by isoforms of the multiple homeodomain zinc finger transcription factor ATBF1. J Biol Chem 276:25057–25065

    Article  PubMed  CAS  Google Scholar 

  88. Ido A, Miura Y, Watanabe M, Sakai M, Inoue Y, Miki T, Hashimoto T, Morinaga T, Nishi S, Tamaoki T (1996) Cloning of the cDNA encoding the mouse ATBF1 transcription factor. Gene 168:227–231

    Article  PubMed  CAS  Google Scholar 

  89. den Hartogh SC, Wolstencroft K, Mummery CL, Passier R (2016) A comprehensive gene expression analysis at sequential stages of in vitro cardiac differentiation from isolated MESP1-expressing-mesoderm progenitors. Sci Rep 6:e19386

    Article  CAS  Google Scholar 

  90. Zhai C, Cong H, Liu Y, Zhang Y, Liu X, Zhang H, Ren Z (2015) Rs7193343 polymorphism in zinc finger homeobox 3 (ZFHX3) gene and atrial fibrillation: an updated meta-analysis of 10 case-control comparisons. BMC Cardiovasc Disord 15:e58

    Article  CAS  Google Scholar 

  91. Benjamin EJ, Rice KM, Arking DE, Pfeufer A, van Noord C, Smith AV, Schnabel RB, Bis JC, Boerwinkle E, Sinner MF, Dehghan A, Lubitz SA, D’Agostino RB Sr, Lumley T, Ehret GB, Heeringa J, Aspelund T, Newton-Cheh C, Larson MG, Marciante KD, Soliman EZ, Rivadeneira F, Wang TJ, Eiriksdottir G, Levy D, Psaty BM, Li M, Chamberlain AM, Hofman A, Vasan RS, Harris TB, Rotter JI, Kao WH, Agarwal SK, Stricker BH, Wang K, Launer LJ, Smith NL, Chakravarti A, Uitterlinden AG, Wolf PA, Sotoodehnia N, Kottgen A, van Duijn CM, Meitinger T, Mueller M, Perz S, Steinbeck G, Wichmann HE, Lunetta KL, Heckbert SR, Gudnason V, Alonso A, Kaab S, Ellinor PT, Witteman JC (2009) Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet 41:879–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Liu Y, Ni B, Lin Y, Chen XG, Fang Z, Zhao L, Hu Z, Zhang F (2014) Genetic polymorphisms in ZFHX3 are associated with atrial fibrillation in a Chinese Han population. PLoS One 9:e101318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zaw KTT, Sato N, Ikeda S, Thu KS, Mieno MN, Arai T, Mori S, Furukawa T, Sasano T, Sawabe M, Tanaka M, Muramatsu M (2016) Association of ZFHX3 gene variation with atrial fibrillation, cerebral infarction, and lung thromboembolism: an autopsy study. J Cardiol 70:180–184

    Article  PubMed  Google Scholar 

  94. Shim J, Uhm JS, Joung B, Lee MH, Pak HN (2016) 4q25 and ZFHX3 single nucleotide polymorphisms are associated with electroanatomical characteristics of left atrium and clinical outcomes of radiofrequency catheter ablation in patients with atrial fibrillation. Int J Arrhythm 17:118–134

    Article  Google Scholar 

  95. Husser D, Buttner P, Ueberham L, Dinov B, Sommer P, Arya A, Hindricks G, Bollmann A (2017) Association of atrial fibrillation susceptibility genes, atrial fibrillation phenotypes and response to catheter ablation: a gene-based analysis of GWAS data. J Transl Med 15:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Jiang Q, Ni B, Shi J, Han Z, Qi R, Xu W, Wang D, Wang DW, Chen M (2014) Down-regulation of ATBF1 activates STAT3 signaling via PIAS3 in pacing-induced HL-1 atrial myocytes. Biochem Biophys Res Commun 449:278–283

    Article  PubMed  CAS  Google Scholar 

  97. Huang Y, Wang C, Yao Y, Zuo X, Chen S, Xu C, Zhang H, Lu Q, Chang L, Wang F, Wang P, Zhang R, Hu Z, Song Q, Yang X, Li C, Li S, Zhao Y, Yang Q, Yin D, Wang X, Si W, Li X, Xiong X, Wang D, Luo C, Li J, Wang J, Chen J, Wang L, Han M, Ye J, Chen F, Liu J, Liu Y, Wu G, Yang B, Cheng X, Liao Y, Wu Y, Ke T, Chen Q, Tu X, Elston R, Rao S, Yang Y, Xia Y, Wang QK (2015) Molecular basis of gene-gene interaction: cyclic cross-regulation of gene expression and post-GWAS gene-gene interaction involved in atrial fibrillation. PLoS Genet 11:e1005393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ye W, Song Y, Huang Z, Zhang Y, Chen Y (2015) Genetic regulation of Sinoatrial node development and pacemaker program in the venous pole. J Cardiovasc Dev Dis 2:282–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Ye W, Wang J, Song Y, Yu D, Sun C, Liu C, Chen F, Zhang Y, Wang F, Harvey RP, Schrader L, Martin JF, Chen Y (2015) A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node. Development 142:2521–2532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hoffmann S, Clauss S, Berger IM, Weiss B, Montalbano A, Roth R, Bucher M, Klier I, Wakili R, Seitz H, Schulze-Bahr E, Katus HA, Flachsbart F, Nebel A, Guenther SP, Bagaev E, Rottbauer W, Kaab S, Just S, Rappold GA (2016) Coding and non-coding variants in the SHOX2 gene in patients with early-onset atrial fibrillation. Basic Res Cardiol 111:e36

    Article  CAS  Google Scholar 

  101. Zhou M, Liao Y, Tu X (2015) The role of transcription factors in atrial fibrillation. J Thorac Dis 7:152–158

    PubMed  PubMed Central  Google Scholar 

  102. Campuzano O, Perez-Serra A, Iglesias A, Brugada R (2016) Genetic basis of atrial fibrillation. Genes Dis 3:257–262

    Article  CAS  Google Scholar 

  103. Fatkin D, Santiago CF, Huttner IG, Lubitz SA, Ellinor PT (2017) Genetics of atrial fibrillation: state of the art in 2017. Heart Lung Circ 26:894–901

    Article  PubMed  Google Scholar 

  104. da Silva AM, de Araujo JN, de Freitas RC, Silbiger VN (2017) Circulating MicroRNAs as potential biomarkers of atrial fibrillation. Biomed Res Int 2017:7804763

    PubMed  PubMed Central  Google Scholar 

  105. Sun L, Sun S, Zeng S, Li Y, Pan W, Zhang Z (2015) Expression of circulating microRNA-1 and microRNA-133 in pediatric patients with tachycardia. Mol Med Rep 11:4039–4046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Liu Z, Zhou C, Liu Y, Wang S, Ye P, Miao X, Xia J (2012) The expression levels of plasma micoRNAs in atrial fibrillation patients. PLoS One 7:e44906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported in part by funds from the Institute of Health Sciences (University of A Coruña, A Coruña, Spain) and by a grant (GRC 2013/061) from the Autonomic Government of Galicia, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander T. Mikhailov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, A.T., Torrado, M. Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation. J Mol Med 96, 601–610 (2018). https://doi.org/10.1007/s00109-018-1647-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1647-4

Keywords

Navigation