Imaging of cytotoxic antiviral immunity while considering the 3R principle of animal research

Abstract

Adoptive cell transfer approaches for antigen-specific CD8+ T cells are used widely to study their effector potential during infections or cancer. However, contemporary methodological adaptations regarding transferred cell numbers, advanced imaging, and the 3R principle of animal research have been largely omitted. Here, we introduce an improved cell transfer method that reduces the number of donor animals substantially and fulfills the requirements for intravital imaging under physiological conditions. For this, we analyzed the well-established Friend retrovirus (FV) mouse model. Donor mice that expressed a FV-specific T cell receptor (TCRtg) and the fluorescent protein tdTomato were used as source of antigen-specific CD8+ T cells. Only a few drops of peripheral blood were sufficient to isolate ~ 150,000 naive reporter cells from which 1000 were adoptively transferred into recently FV-infected recipients. The cells became activated and functional and expanded strongly in the spleen and bone marrow within 10 days post infection. Transferred CD8+ T cells participated in the antiviral host response within a natural range and developed an effector phenotype indistinguishable from endogenous effector CD8+ T cells. Additionally, the generated reporter cell frequency allowed single cell visualization and tracking of a physiological antiretroviral CD8+ T cell response by intravital two-photon microscopy. Highly reproducible results were obtained in independent experiments by reusing the same donors repetitively for multiple transfers. Our approach allows a strong reduction of experimental animals required for studies on antigen-specific CD8+ T cell function and should be applicable to other transfer models.

Key messages

  • TCRtg CD8+ T cells are obtained repetitively from the blood samples of single donors.

  • One thousand transferred TCRtg CD8+ T cells get activated, are functional, and proliferate.

  • Several adoptive cell transfers from the same donor show reproducible results.

  • One thousand transferred cells take part in the FV immune response without modifying it.

  • Use of fluorescent transfer cells allows in vivo imaging and single cell tracking.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Halle S, Keyser KA, Stahl FR, Busche A, Marquardt A, Zheng X, Galla M, Heissmeyer V, Heller K, Boelter J, Wagner K, Bischoff Y, Martens R, Braun A, Werth K, Uvarovskii A, Kempf H, Meyer-Hermann M, Arens R, Kremer M, Sutter G, Messerle M, Förster R (2016) In vivo killing capacity of cytotoxic T cells is limited and involves dynamic interactions and T cell cooperativity. Immunity 44:233–245

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M, Germeroth L, Ringhoffer M, Ringhoffer S, Wiesneth M, Greiner J, Michel D, Mertens T, Rojewski M, Marx M, von Harsdorf S, Döhner H, Seifried E, Bunjes D, Schmitt M (2011) Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51:591–599

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H, Busch DH (2007) A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27:985–997

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL, Sharpe AH, Freeman GJ, Blazar BR, Turka LA, Owonikoko TK, Pillai RN, Ramalingam SS, Araki K, Ahmed R (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355:1423–1427

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Dittmer U, He H, Messer RJ, Schimmer S, Olbrich AR, Ohlen C, Greenberg PD, Stromnes IM, Iwashiro M, Sakaguchi S et al (2004) Functional impairment of CD8(+) T cells by regulatory T cells during persistent retroviral infection. Immunity 20:293–303

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hukelmann JL, Anderson KE, Sinclair LV, Grzes KM, Murillo AB, Hawkins PT, Stephens LR, Lamond AI, Cantrell DA (2016) The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol 17:104–112

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Barchet W, Oehen S, Klenerman P, Wodarz D, Bocharov G, Lloyd AL, Nowak MA, Hengartner H, Zinkernagel RM, Ehl S (2000) Direct quantitation of rapid elimination of viral antigen-positive lymphocytes by antiviral CD8(+) T cells in vivo. Eur J Immunol 30:1356–1363

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Badovinac VP, Haring JS, Harty JT (2007) Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. Immunity 26:827–841

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Marzo AL, Klonowski KD, Le Bon A, Borrow P, Tough DF, Lefrancois L (2005) Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat Immunol 6:793–799

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, Altman JD, Ahmed R (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195:657–664

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Stock AT, Mueller SN, Kleinert LM, Heath WR, Carbone FR, Jones CM (2007) Optimization of TCR transgenic T cells for in vivo tracking of immune responses. Immunol Cell Biol 85:394–396

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Myers L, Hasenkrug KJ (2009) Retroviral immunology: lessons from a mouse model. Immunol Res 43:160–166

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hasenkrug KJ, Dittmer U (2007) Immune control and prevention of chronic Friend retrovirus infection. Front Biosci 12:1544–1551

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Chen W, Qin H, Chesebro B, Cheever MA (1996) Identification of a gag-encoded cytotoxic T-lymphocyte epitope from FBL-3 leukemia shared by Friend, Moloney, and Rauscher murine leukemia virus-induced tumors. J Virol 70:7773–7782

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Ohlen C, Kalos M, Cheng LE, Shur AC, Hong DJ, Carson BD, Kokot NC, Lerner CG, Sather BD, Huseby ES et al (2002) CD8(+) T cell tolerance to a tumor-associated antigen is maintained at the level of expansion rather than effector function. J Exp Med 195:1407–1418

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Germain RN, Robey EA, Cahalan MD (2012) A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336:1676–1681

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Mempel TR, Henrickson SE, von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Breart B, Lemaitre F, Celli S, Bousso P (2008) Two-photon imaging of intratumoral CD8 T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest 118:1390–1397

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K, Hemmi H, Garbi N, Kaisho T, Germain RN, Kastenmuller W (2015) Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162:1322–1337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Liu Z, Gerner MY, Van PN, Levine AG, Rudensky AY, Germain RN (2015) Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528:225–230

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Deguine J, Breart B, Lemaitre F, Di Santo JP, Bousso P (2010) Intravital imaging reveals distinct dynamics for natural killer and CD8(+) T cells during tumor regression. Immunity 33:632–644

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Beuneu H, Lemaitre F, Deguine J, Moreau HD, Bouvier I, Garcia Z, Albert ML, Bousso P (2010) Visualizing the functional diversification of CD8(+) T cell responses in lymph nodes. Immunity 33:412–423

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S (2008) Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28:258–270

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Gunzer M, Weishaupt C, Hillmer A, Basoglu Y, Friedl P, Dittmar KE, Kolanus W, Varga G, Grabbe S (2004) A spectrum of biophysical interaction modes between T cells and different antigen presenting cells during priming in 3-D collagen and in vivo. Blood 104:2801–2809

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  26. 26.

    Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, Hamann A, Wagner H, Huehn J, Sparwasser T (2007) Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 204:57–63

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Zhang DJ, Wang Q, Wei J, Baimukanova G, Buchholz F, Stewart AF, Mao X, Killeen N (2005) Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene. J Immunol 174:6725–6731

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Lilly F, Steeves RA (1973) B-tropic Friend virus: a host-range pseudotype of spleen focus-forming virus (SFFV). Virology 55:363–370

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Robertson SJ, Ammann CG, Messer RJ, Carmody AB, Myers L, Dittmer U, Nair S, Gerlach N, Evans LH, Cafruny WA, Hasenkrug KJ (2008) Suppression of acute anti-friend virus CD8+ T-cell responses by coinfection with lactate dehydrogenase-elevating virus. J Virol 82:408–418

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Grupillo M, Lakomy R, Geng X, Styche A, Rudert WA, Trucco M, Fan Y (2011) An improved intracellular staining protocol for efficient detection of nuclear proteins in YFP-expressing cells. BioTechniques 51:417–420

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Köhler A, De Filippo K, Hasenberg M, van den Brandt C, Nye E, Hosking MP, Lane TE, Männ L, Ransohoff RM, Hauser AE et al (2011) G-CSF mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood 117:4349–4357

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Robertson MN, Miyazawa M, Mori S, Caughey B, Evans LH, Hayes SF, Chesebro B (1991) Production of monoclonal antibodies reactive with a denatured form of the Friend murine leukemia virus gp70 envelope protein: use in a focal infectivity assay, immunohistochemical studies, electron microscopy and western blotting. J Virol Methods 34:255–271

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Berke G (1994) The binding and lysis of target cells by cytotoxic lymphocytes: molecular and cellular aspects. Annu Rev Immunol 12:735–773

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281:65–78

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Zelinskyy G, Dietze KK, Husecken YP, Schimmer S, Nair S, Werner T, Gibbert K, Kershaw O, Gruber AD, Sparwasser T, Dittmer U (2009) The regulatory T-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic T-cell response. Blood 114:3199–3207

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Mazo IB, Honczarenko M, Leung H, Cavanagh LL, Bonasio R, Weninger W, Engelke K, Xia L, McEver RP, Koni PA et al (2005) Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22:259–270

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I (2004) T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci U S A 101:998–1003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Gunzer M, Schäfer A, Borgmann S, Grabbe S, Zänker KS, Bröcker E-B, Kämpgen E, Friedl P (2000) Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13:323–332

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Yoon H, Kim TS, Braciale TJ (2010) The cell cycle time of CD8+ T cells responding in vivo is controlled by the type of antigenic stimulus. PLoS One 5:e15423. https://doi.org/10.1371/journal.pone.0015423

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36:142–152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Giovanoli S, Engler H, Engler A, Richetto J, Voget M, Willi R, Winter C, Riva MA, Mortensen PB, Feldon J, Schedlowski M, Meyer U (2013) Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339:1095–1099

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Imaging Center Essen (IMCES) is acknowledged for expert technical support in imaging experiments.

Funding

This work was supported by a grant to M.G., U.D., and G.Z. from the Deutsche Forschungsgemeinschaft (DFG, TRR60, Projects B4 and B8), and the European Union (H2020, Multimot) to M.G. L.O. was trained in the DFG-funded RTG 1949.

Author information

Affiliations

Authors

Contributions

L.O. performed all experiments. G.Z. and M.S. provided essential support. L.O. and M.G. wrote the manuscript with the help of G.Z. and U.D. M.G. and U.D. conceived of and supervised the study.

Corresponding authors

Correspondence to Ulf Dittmer or Matthias Gunzer.

Ethics declarations

Animal experiments were conducted under strict consent with the German regulations of the Society for Laboratory Animal Science (GV-SOLAS) and the European Health Law of the Federation of Laboratory Animal Science Associations (FELASA). North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (LANUV) approved all experiments and protocols.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Otto, L., Zelinskyy, G., Schuster, M. et al. Imaging of cytotoxic antiviral immunity while considering the 3R principle of animal research. J Mol Med 96, 349–360 (2018). https://doi.org/10.1007/s00109-018-1628-7

Download citation

Keywords

  • Antigen-specific cytotoxic CD8+ T cells (CTL)
  • Adoptive cell transfer
  • Repetitive donor mouse usage
  • Intravital imaging
  • Retroviruses
  • 3R principle