Journal of Molecular Medicine

, Volume 96, Issue 5, pp 403–412 | Cite as

AMPKα inactivation destabilizes atherosclerotic plaque in streptozotocin-induced diabetic mice through AP-2α/miRNA-124 axis

  • Wen-Jing Liang
  • Sheng-Nan Zhou
  • Mei-Rong Shan
  • Xue-Qin Wang
  • Miao Zhang
  • Yuan Chen
  • Yun Zhang
  • Shuang-Xi Wang
  • Tao Guo
Original Article


Diabetes mellitus is one of risk factors of cardiovascular diseases including atherosclerosis. Whether and how diabetes promotes the formation of unstable atherosclerotic plaque is not fully understood. Here, we show that streptozotocin-induced type 1 diabetes reduced collagen synthesis, leading to the formation of unstable atherosclerotic plaque induced by collar placement around carotid in apolipoprotein E knockout (Apoe−/−) mice. These detrimental effects of hyperglycemia on plaque stability were reversed by metformin in vivo without altering the levels of blood glucose and lipids. Mechanistically, we found that high glucose reduced the phosphorylated level of AMP-activated protein kinase alpha (AMPKα) and the transcriptional activity of activator protein 2 alpha (AP-2α), increased the expression of miR-124 expression, and downregulated prolyl-4-hydroxylase alpha 1 (P4Hα1) protein expression and collagen biosynthesis in cultured vascular smooth muscle cells. Importantly, these in vitro effects produced by high glucose were abolished by AMPKα pharmacological activation or adenovirus-mediated AMPKα overexpression. Further, adenovirus-mediated AMPKα gain of function remitted the process of diabetes-induced plaque destabilization in Apoe−/− mice injected with streptozotocin. Administration of metformin enhanced pAP-2α level, reduced miR-124 expression, and increased P4Hα1 and collagens in carotid atherosclerotic plaque in diabetic Apoe−/− mice. We conclude that streptozotocin-induced toxic diabetes promotes the formation of unstable atherosclerotic plaques based on the vulnerability index in Apoe−/− mice, which is related to the inactivation of AMPKα/AP-2α/miRNA-124/P4Hα1 axis. Clinically, targeting AMPKα/AP-2α/miRNA-124/P4Hα1 signaling should be considered to increase the plaque stability in patients with atherosclerosis.

Key messages

  • Hyperglycemia reduced collagen synthesis, leading to the formation of unstable atherosclerotic plaque induced by collar placement around carotid in apolipoprotein E knockout mice.

  • Hyperglycemia destabilizes atherosclerotic plaque in vivo through an AMPKα/AP-2α/miRNA-124/P4Hα1-dependent collagen synthesis.

  • Metformin functions as a stabilizer of atherosclerotic plaque to reduce acute coronary accent.


AMPKα Diabetes Atherosclerosis AP-2α miR-124 P4Hα1 



This work was supported by National Natural Science Foundation of China (81770493, 81320108004, 81370411, and 81470591).

Author contributions

W.J.L. designed and conducted the experiments and analyzed data. S.N.Z., M.R.S., X.Q.W., M.Z., Y.C., and X.Y.P. partially performed some experiments. Y.Z., T.G., and S.X.W. analyzed the data, wrote the manuscript, and convinced the whole project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

109_2018_1627_MOESM1_ESM.docx (749 kb)
ESM 1 (DOCX 748 kb)


  1. 1.
    Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471CrossRefPubMedGoogle Scholar
  2. 2.
    Donahoe SM, Stewart GC, McCabe CH, Mohanavelu S, Murphy SA, Cannon CP, Antman EM (2007) Diabetes and mortality following acute coronary syndromes. JAMA 298:765–775CrossRefPubMedGoogle Scholar
  3. 3.
    Shah PK (2003) Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 41:S15–S22CrossRefGoogle Scholar
  4. 4.
    Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850CrossRefPubMedGoogle Scholar
  5. 5.
    Myllyharju J (2003) Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol 22:15–24CrossRefPubMedGoogle Scholar
  6. 6.
    Rocnik EF, Chan BM, Pickering JG (1998) Evidence for a role of collagen synthesis in arterial smooth muscle cell migration. J Clin Invest 101:1889–1898CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lopez M, Nogueiras R, Tena-Sempere M, Dieguez C (2016) Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol 12:421–432CrossRefPubMedGoogle Scholar
  8. 8.
    Wang S, Xu J, Song P, Viollet B, Zou MH (2009) In vivo activation of AMP-activated protein kinase attenuates diabetes-enhanced degradation of GTP cyclohydrolase I. Diabetes 58:1893–1901CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ido Y, Carling D, Ruderman N (2002) Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes 51:159–167CrossRefPubMedGoogle Scholar
  10. 10.
    Ouslimani N, Peynet J, Bonnefont-Rousselot D, Therond P, Legrand A, Beaudeux JL (2005) Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metab Clin Exp 54:829–834CrossRefPubMedGoogle Scholar
  11. 11.
    Wang S, Zhang M, Liang B, Xu J, Xie Z, Liu C, Viollet B, Yan D, Zou MH (2010) AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ Res 106:1117–1128CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55:2180–2191CrossRefPubMedGoogle Scholar
  13. 13.
    Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13:376–388CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Park MJ, Kwak HJ, Lee HC, Yoo DH, Park IC, Kim MS, Lee SH, Rhee CH, Hong SI (2007) Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor. J Biol Chem 282:30485–30496CrossRefPubMedGoogle Scholar
  15. 15.
    Wang S, Zhang C, Zhang M, Liang B, Zhu H, Lee J, Viollet B, Xia L, Zhang Y, Zou MH (2012) Activation of AMP-activated protein kinase alpha2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nat Med 18:902–910CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yang JJ, Li P, Wang F, Liang WJ, Ma H, Chen Y, Ma ZM, Li QZ, Peng QS, Zhang Y, Wang SX (2016) Activation of activator protein 2 alpha by aspirin alleviates atherosclerotic plaque growth and instability in vivo. Oncotarget 7:52729–52739PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ma H, Liang WJ, Shan MR, Wang XQ, Zhou SN, Chen Y, Guo T, Li P, Yu HY, Liu C, Yin YL, Wang YL, Dong B, Pang XY, Wang SX (2017) Pravastatin activates activator protein 2 alpha to augment the angiotensin II-induced abdominal aortic aneurysms. Oncotarget 8:14294–14305PubMedPubMedCentralGoogle Scholar
  18. 18.
    von der Thusen JH, van Berkel TJ, Biessen EA (2001) Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation 103:1164–1170CrossRefPubMedGoogle Scholar
  19. 19.
    Li P, Yin YL, Guo T, Sun XY, Ma H, Zhu ML, Zhao FR, Xu P, Chen Y, Wan GR, Jiang F, Peng QS, Liu C, Liu LY, Wang SX (2016) Inhibition of aberrant microRNA-133a expression in endothelial cells by statin prevents endothelial dysfunction by targeting GTP cyclohydrolase 1 in vivo. Circulation 134:1752–1765CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nagareddy PR, Murphy AJ, Stirzaker RA, Hu Y, Yu S, Miller RG, Ramkhelawon B, Distel E, Westerterp M, Huang LS, Schmidt AM, Orchard TJ, Fisher EA, Tall AR, Goldberg IJ (2013) Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 17:695–708CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kooy A, de Jager J, Lehert P, Bets D, Wulffele MG, Donker AJ, Stehouwer CD (2009) Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Arch Intern Med 169:616–625CrossRefPubMedGoogle Scholar
  22. 22.
    Kivirikko KI, Helaakoski T, Tasanen K, Vuori K, Myllyla R, Parkkonen T, Pihlajaniemi T (1990) Molecular biology of prolyl 4-hydroxylase. Ann N Y Acad Sci 580:132–142CrossRefPubMedGoogle Scholar
  23. 23.
    Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520CrossRefPubMedGoogle Scholar
  24. 24.
    Wang F, Ma H, Liang WJ, Yang JJ, Wang XQ, Shan MR, Chen Y, Jia M, Yin YL, Sun XY, Zhang JN, Peng QS, Chen YG, Liu LY, Li P, Guo T, Wang SX (2017) Lovastatin upregulates microRNA-29b to reduce oxidative stress in rats with multiple cardiovascular risk factors. Oncotarget 8:9021–9034PubMedPubMedCentralGoogle Scholar
  25. 25.
    Chakravarthi BV, Pathi SS, Goswami MT, Cieslik M, Zheng H, Nallasivam S, Arekapudi SR, Jing X, Siddiqui J, Athanikar J, Carskadon SL, Lonigro RJ, Kunju LP, Chinnaiyan AM, Palanisamy N, Varambally S (2014) The miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression. Oncotarget 5:6654–6669CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Parathath S, Grauer L, Huang LS, Sanson M, Distel E, Goldberg IJ, Fisher EA (2011) Diabetes adversely affects macrophages during atherosclerotic plaque regression in mice. Diabetes 60:1759–1769CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sun H, Zhang X, Zhao L, Zhen X, Huang S, Wang S, He H, Liu Z, Xu N, Yang F, Qu Z, Ma Z, Zhang C, Zhang Y, Hu Q (2015) Attenuation of atherosclerotic lesions in diabetic apolipoprotein E-deficient mice using gene silencing of macrophage migration inhibitory factor. J Cell Mol Med 19:836–849CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Iwamoto N, Abe-Dohmae S, Ayaori M, Tanaka N, Kusuhara M, Ohsuzu F, Yokoyama S (2007) ATP-binding cassette transporter A1 gene transcription is downregulated by activator protein 2alpha. Doxazosin inhibits activator protein 2alpha and increases high-density lipoprotein biogenesis independent of alpha1-adrenoceptor blockade. Circ Res 101:156–165CrossRefPubMedGoogle Scholar
  29. 29.
    Iwamoto N, Abe-Dohmae S, Lu R, Yokoyama S (2008) Involvement of protein kinase D in phosphorylation and increase of DNA binding of activator protein 2 alpha to downregulate ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 28:2282–2287CrossRefPubMedGoogle Scholar
  30. 30.
    Magnusson SP, Heinemeier KM, Kjaer M (2016) Collagen homeostasis and metabolism. Adv Exp Med Biol 920:11–25CrossRefPubMedGoogle Scholar
  31. 31.
    Utsugi T, Yoon JW, Park BJ, Imamura M, Averill N, Kawazu S, Santamaria P (1996) Major histocompatibility complex class I-restricted infiltration and destruction of pancreatic islets by NOD mouse-derived beta-cell cytotoxic CD8+ T-cell clones in vivo. Diabetes 45:1121–1131CrossRefPubMedGoogle Scholar
  32. 32.
    Low Wang CC, Hess CN, Hiatt WR, Goldfine AB (2016) Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus—mechanisms, management, and clinical considerations. Circulation 133:2459–2502CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Paneni F, Costantino S, Cosentino F (2014) Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep 16:419CrossRefPubMedGoogle Scholar
  34. 34.
    Shafrir E (1996) Development and consequences of insulin resistance: lessons from animals with hyperinsulinaemia. Diabetes Metab 22:122–131PubMedGoogle Scholar
  35. 35.
    Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu HospitalShandong University School of MedicineJinanChina

Personalised recommendations