Skip to main content

Advertisement

Log in

Epigenetic silencing of PRSS3 provides growth and metastasis advantage for human hepatocellular carcinoma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Protease, serine, 3 (PRSS3), a member of the trypsin family of serine proteases, has been shown to be aberrantly expressed in several cancer types and to play important roles in tumor progression and metastasis. However, the expression and function of PRSS3 gene in hepatocellular carcinoma (HCC) remain unclear. Here we found that PRSS3 expression was decreased in human HCC cell lines and HCC surgical specimens. This was associated with intragenic methylation of PRSS3 gene. Treatment with DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine and/or histone deacetylase inhibitor trichostatin A restored PRSS3 expression in HCC cell lines. Ectopic overexpression of PRSS3 gene in HCC cell lines significantly suppressed cell proliferation and colony formation and arrested cell cycle at G1/S phase, accompanied with downregulation of cyclin D1 (CCND1)/CDK4 and cyclin E1 (CCNE1)/CDK2 complexes. Moreover, PRSS3 overexpression in HCC cells inhibited HCC cell migration and invasion with downregulation of matrix metallopeptidase 2 (MMP2). Further study showed that PRSS3 overexpression diminished the phosphorylation of mitogen-activated protein kinase/extracellular-signal-regulated kinase signaling protein, mitogen-activated protein kinase kinase 1 (MEK1)/mitogen-activated protein kinase kinase 2 (MEK2) and extracellular-signal related kinase 1 (ERK1)/extracellular-signal related kinase 2 (ERK2), in HCC cells. In contrast, knockdown of PRSS3 by small interfering RNA resulted in opposite effects on an HCC cell line SNU-387 which constitutively expresses PRSS3. These results demonstrate that downregulation of PRSS3 by intragenic hypermethylation provides growth and metastasis advantage to HCC cells. The clinical relevance of PRSS3 to human HCC was shown by the intragenic methylation of PRSS3 in HCC specimens and its association with poor tumor differentiation in patients with HCC. Thus, PRSS3 is a potential prognostic biomarker and an epigenetic target for intervention of human HCC.

Key messages

• PRSS3 is downregulated by intragenic hypermethylation in HCC.

Epigenetic silencing of PRSS3 facilitates growth, migration, and invasion of HCC.

• PRSS3 intragenic methylation has implication in diagnosis of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365:1118–1127

    Article  CAS  PubMed  Google Scholar 

  2. Feo F, Frau M, Pascale RM (2008) Interaction of major genes predisposing to hepatocellular carcinoma with genes encoding signal transduction pathways influences tumor phenotype and prognosis. World J Gastroenterol 14:6601–6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frenette C, Gish RG (2011) Hepatocellular carcinoma: molecular and genomic guideline for the clinician. Clin Liver Dis 15:307–321, vii-x

    Article  PubMed  Google Scholar 

  4. Mann DA (2014) Epigenetics in liver disease. Hepatology 60:1418–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pogribny IP, Rusyn I (2014) Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 342:223–230

    Article  CAS  PubMed  Google Scholar 

  6. Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808

    Article  CAS  PubMed  Google Scholar 

  7. Nyberg P, Ylipalosaari M, Sorsa T, Salo T (2006) Trypsins and their role in carcinoma growth. Exp Cell Res 312:1219–1228

    Article  CAS  PubMed  Google Scholar 

  8. Itkonen O (2010) Human trypsinogens in the pancreas and in cancer. Scand J Clin Lab Invest 70:136–143

    Article  CAS  PubMed  Google Scholar 

  9. Sahin-Toth M (2005) Human mesotrypsin defies natural trypsin inhibitors: from passive resistance to active destruction. Protein Pept Lett 12:457–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salameh MA, Radisky ES (2013) Biochemical and structural insights into mesotrypsin: an unusual human trypsin. Int J Biochem Mol Biol 4:129–139

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nyaruhucha CN, Kito M, Fukuoka SI (1997) Identification and expression of the cDNA-encoding human mesotrypsin(ogen), an isoform of trypsin with inhibitor resistance. J Biol Chem 272:10573–10578

    Article  CAS  PubMed  Google Scholar 

  12. Wiegand U, Corbach S, Minn A, Kang J, Muller-Hill B (1993) Cloning of the cDNA encoding human brain trypsinogen and characterization of its product. Gene 136:167–175

    Article  CAS  PubMed  Google Scholar 

  13. Tani T, Kawashima I, Mita K, Takiguchi Y (1990) Nucleotide sequence of the human pancreatic trypsinogen III cDNA. Nucleic Acids Res 18:1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cottrell GS, Amadesi S, Grady EF, Bunnett NW (2004) Trypsin IV, a novel agonist of protease-activated receptors 2 and 4. J Biol Chem 279:13532–13539

    Article  CAS  PubMed  Google Scholar 

  15. Nakanishi J, Yamamoto M, Koyama J, Sato J, Hibino T (2010) Keratinocytes synthesize enteropeptidase and multiple forms of trypsinogen during terminal differentiation. J Invest Dermatol 130:944–952

    Article  CAS  PubMed  Google Scholar 

  16. Soreide K, Janssen EA, Korner H, Baak JP (2006) Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis. J Pathol 209:147–156

    Article  CAS  PubMed  Google Scholar 

  17. Han S, Lee CW, Trevino JG, Hughes SJ, Sarosi GA Jr (2013) Autocrine extra-pancreatic trypsin 3 secretion promotes cell proliferation and survival in esophageal adenocarcinoma. PLoS One 8:e76667. doi:10.1371/journal.pone.0076667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hockla A, Miller E, Salameh MA, Copland JA, Radisky DC, Radisky ES (2012) PRSS3/mesotrypsin is a therapeutic target for metastatic prostate cancer. Mol Cancer Res 10:1555–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hockla A, Radisky DC, Radisky ES (2010) Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109. Breast Cancer Res Treat 124:27–38

    Article  CAS  PubMed  Google Scholar 

  20. Jiang G, Cao F, Ren G, Gao D, Bhakta V, Zhang Y, Cao H, Dong Z, Zang W, Zhang S et al (2010) PRSS3 promotes tumour growth and metastasis of human pancreatic cancer. Gut 59:1535–1544

    Article  CAS  PubMed  Google Scholar 

  21. Ma R, Ye X, Cheng H, Ma Y, Cui H, Chang X (2015) PRSS3 expression is associated with tumor progression and poor prognosis in epithelial ovarian cancer. Gynecol Oncol 137:546–552

    Article  CAS  PubMed  Google Scholar 

  22. Ghilardi C, Silini A, Figini S, Anastasia A, Lupi M, Fruscio R, Giavazzi R, Bani MR (2015) Trypsinogen 4 boosts tumor endothelial cells migration through proteolysis of tissue factor pathway inhibitor-2. Oncotarget 6:28389–28400

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Whiteford CC, Bilke S, Krasnoselsky AL, Cenacchi N et al (2004) Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res 64:6883–6891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marsit CJ, Karagas MR, Schned A, Kelsey KT (2006) Carcinogen exposure and epigenetic silencing in bladder cancer. Ann N Y Acad Sci 1076:810–821

    Article  CAS  PubMed  Google Scholar 

  25. Marsit CJ, Okpukpara C, Danaee H, Kelsey KT (2005) Epigenetic silencing of the PRSS3 putative tumor suppressor gene in non-small cell lung cancer. Mol Carcinog 44:146–150

    Article  CAS  PubMed  Google Scholar 

  26. Yamashita K, Mimori K, Inoue H, Mori M, Sidransky D (2003) A tumor-suppressive role for trypsin in human cancer progression. Cancer Res 63:6575–6578

    CAS  PubMed  Google Scholar 

  27. Lin S, Lin B, Wang X, Pan Y, Xu Q, He JS, Gong W, Xing R, He Y, Guo L et al (2017) Silencing of ATP4B of ATPase H+/K+ transporting beta subunit by intragenic epigenetic alteration in human gastric cancer cells. Oncol Res 25:317–329

    Article  PubMed  Google Scholar 

  28. Zhu H, Wu K, Yan W, Hu L, Yuan J, Dong Y, Li Y, Jing K, Yang Y, Guo M (2013) Epigenetic silencing of DACH1 induces loss of transforming growth factor-beta1 antiproliferative response in human hepatocellular carcinoma. Hepatology 58:2012–2022

    Article  CAS  PubMed  Google Scholar 

  29. Pan Y, Lin S, Xing R, Zhu M, Lin B, Cui J, Li W, Gao J, Shen L, Zhao Y et al (2016) Epigenetic upregulation of metallothionein 2A by diallyl trisulfide enhances chemosensitivity of human gastric cancer cells to docetaxel through attenuating NF-kappaB activation. Antioxid Redox Signal 24:839–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rowen L, Williams E, Glusman G, Linardopoulou E, Friedman C, Ahearn ME, Seto J, Boysen C, Qin S, Wang K et al (2005) Interchromosomal segmental duplications explain the unusual structure of PRSS3, the gene for an inhibitor-resistant trypsinogen. Mol Biol Evol 22:1712–1720

    Article  CAS  PubMed  Google Scholar 

  31. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M, Carter C (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 66:11851–11858

    Article  CAS  PubMed  Google Scholar 

  32. Massague J (2004) G1 cell-cycle control and cancer. Nature 432:298–306

    Article  CAS  PubMed  Google Scholar 

  33. Jena N, Deng M, Sicinska E, Sicinski P, Daley GQ (2002) Critical role for cyclin D2 in BCR/ABL-induced proliferation of hematopoietic cells. Cancer Res 62:535–541

    CAS  PubMed  Google Scholar 

  34. Yoshida T, Hisamoto T, Akiba J, Koga H, Nakamura K, Tokunaga Y, Hanada S, Kumemura H, Maeyama M, Harada M et al (2006) Spreds, inhibitors of the Ras/ERK signal transduction, are dysregulated in human hepatocellular carcinoma and linked to the malignant phenotype of tumors. Oncogene 25:6056–6066

    Article  CAS  PubMed  Google Scholar 

  35. Radisky ES (2013) PRSS3/mesotrypsin in prostate cancer progression: implications for translational medicine. Asian J Androl 15:439–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diederichs S, Bulk E, Steffen B, Ji P, Tickenbrock L, Lang K, Zanker KS, Metzger R, Schneider PM, Gerke V et al (2004) S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res 64:5564–5569

    Article  CAS  PubMed  Google Scholar 

  37. Hirahara F, Miyagi Y, Miyagi E, Yasumitsu H, Koshikawa N, Nagashima Y, Kitamura H, Minaguchi H, Umeda M, Miyazaki K (1995) Trypsinogen expression in human ovarian carcinomas. Int J Cancer 63:176–181

    Article  CAS  PubMed  Google Scholar 

  38. Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A, Nelson HH, Kelsey KT (2006) Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27:112–116

    Article  CAS  PubMed  Google Scholar 

  39. Martinez I, Wang J, Hobson KF, Ferris RL, Khan SA (2007) Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer 43:415–432

    Article  CAS  PubMed  Google Scholar 

  40. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Jadhav RR, Liu J, Wilson D, Chen Y, Thompson IM, Troyer DA, Hernandez J, Shi H, Leach RJ et al (2016) Roles of distal and genic methylation in the development of prostate tumorigenesis revealed by genome-wide DNA methylation analysis. Sci Rep 6:22051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK (2012) On the presence and role of human gene-body DNA methylation. Oncotarget 3:462–474

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM (2011) DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 6:e14524. doi:10.1371/journal.pone.0014524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11:1068–1075

    Article  CAS  PubMed  Google Scholar 

  45. Daniele A, Divella R, Quaranta M, Mattioli V, Casamassima P, Paradiso A, Garrisi VM, Gadaleta CD, Gadaleta-Caldarola G, Savino E et al (2014) Clinical and prognostic role of circulating MMP-2 and its inhibitor TIMP-2 in HCC patients prior to and after trans-hepatic arterial chemo-embolization. Clin Biochem 47:184–190

    Article  CAS  PubMed  Google Scholar 

  46. Golubnitschaja O, Yeghiazaryan K, Stricker H, Trog D, Schild HH, Berliner L (2016) Patients with hepatic breast cancer metastases demonstrate highly specific profiles of matrix metalloproteinases MMP-2 and MMP-9 after SIRT treatment as compared to other primary and secondary liver tumours. BMC Cancer 16:357

    Article  PubMed  PubMed Central  Google Scholar 

  47. Darmoul D, Gratio V, Devaud H, Laburthe M (2004) Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J Biol Chem 279:20927–20934

    Article  CAS  PubMed  Google Scholar 

  48. Su S, Li Y, Luo Y, Sheng Y, Su Y, Padia RN, Pan ZK, Dong Z, Huang S (2009) Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration. Oncogene 28:3047–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Knecht W, Cottrell GS, Amadesi S, Mohlin J, Skaregarde A, Gedda K, Peterson A, Chapman K, Hollenberg MD, Vergnolle N et al (2007) Trypsin IV or mesotrypsin and p23 cleave protease-activated receptors 1 and 2 to induce inflammation and hyperalgesia. J Biol Chem 282:26089–26100

    Article  CAS  PubMed  Google Scholar 

  50. Grishina Z, Ostrowska E, Halangk W, Sahin-Toth M, Reiser G (2005) Activity of recombinant trypsin isoforms on human proteinase-activated receptors (PAR): mesotrypsin cannot activate epithelial PAR-1, -2, but weakly activates brain PAR-1. Br J Pharmacol 146:990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV (2015) Protease-activated receptors (PARs)-biology and role in cancer invasion and metastasis. Cancer Metastasis Rev 34:775–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lau C, Lytle C, Straus DS, DeFea KA (2011) Apical and basolateral pools of proteinase-activated receptor-2 direct distinct signaling events in the intestinal epithelium. Am J Physiol Cell Physiol 300:C113–C123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Keqiang Chen for help with the data interpretation. This work was supported by the following grants: National Key Scientific Instrument Special Program of China (Grant No.2011YQ03013405); National Science Foundation of China (NSFC No.8167318, U1604281, 81230047, 81490753, 81121004, 81402345); Beijing Science Foundation of China (BJSFC No. 7171008); and Translational foundation of Chinese PLA General Hospital (2016ZHJJ-MS-GMZ). JH and JMW were also funded in part by Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E and were supported in part by the Intramural Research Program of the NCI, NIH. JH was also supported by the Intramural Research funding of Beijing Jiaotong University (S12RC00030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingzhou Guo or Jiaqiang Huang.

Ethics declarations

Ethics approval

This study was conducted with the approval of the Institutional Review Board of the Chinese PLA General Hospital and with informed consent from patients.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, B., Zhou, X., Lin, S. et al. Epigenetic silencing of PRSS3 provides growth and metastasis advantage for human hepatocellular carcinoma. J Mol Med 95, 1237–1249 (2017). https://doi.org/10.1007/s00109-017-1578-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1578-5

Keywords

Navigation