Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment

Abstract

Cells of the hematopoietic system undergo rapid turnover. Each day, humans require the production of about one hundred billion new blood cells for proper function. Hematopoietic stem cells (HSCs) are rare cells that reside in specialized niches and are required throughout life to produce specific progenitor cells that will replenish all blood lineages. There is, however, an incomplete understanding of the molecular and physical properties that regulate HSC migration, homing, engraftment, and maintenance in the niche. Endothelial cells (ECs) are intimately associated with HSCs throughout the life of the stem cell, from the specialized endothelial cells that give rise to HSCs, to the perivascular niche endothelial cells that regulate HSC homeostasis. Recent studies have dissected the unique molecular and physical properties of the endothelial cells in the HSC vascular niche and their role in HSC biology, which may be manipulated to enhance hematopoietic stem cell transplantation therapies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Samokhvalov IM, Samokhvalova NI, Nishikawa S-I (2007) Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446:1056–1061

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    North TE, de Bruijn MFTR, Stacy T, Talebian L, Lind E, Robin C, Binder M, Dzierzak E, Speck NA (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:661–672

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Göthert JR, Gustin SE, Hall MA, Green AR, Göttgens B, Izon DJ, Begley CG (2005) In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 105:2724–2732

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Sanchez MJ, Holmes A, Miles C, Dzierzak E (1996) Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 5:513–525

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Boisset J-C, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–120

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464:112–115

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DYR, Traver D (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464:108–111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1:291–301

    PubMed  Article  Google Scholar 

  10. 10.

    Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Mendelson A, Frenette PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20:833–846

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Birbrair A, Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 1370:82–96

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS, Seita J, Sahoo D, Nakauchi H, Weissman IL (2016) Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530:223–227

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Rafii S, Butler JM, Ding B-S (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529:316–325

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Kobayashi H, Butler JM, O'Donnell R, Kobayashi M, Ding B-S, Bonner B, Chiu VK, Nolan DJ, Shido K, Benjamin L et al (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 12:1046–1056

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Ohneda O, Fennie C, Zheng Z, Donahue C, La H, Villacorta R, Cairns B, Lasky LA (1998) Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92:908–919

    CAS  PubMed  Google Scholar 

  19. 19.

    Rafii S, Shapiro F, Pettengell R, Ferris B, Nachman RL, Moore MA, Asch AS (1995) Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86:3353–3363

    CAS  PubMed  Google Scholar 

  20. 20.

    Lu LS, Wang SJ, Auerbach R (1996) In vitro and in vivo differentiation into B cells, T cells, and myeloid cells of primitive yolk sac hematopoietic precursor cells expanded >100-fold by coculture with a clonal yolk sac endothelial cell line. P Natl Acad Sci USA 93:14782–14787

    CAS  Article  Google Scholar 

  21. 21.

    Li W, Johnson SA, Shelley WC, Ferkowicz M, Morrison P, Li Y, Yoder MC (2003) Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro. Blood 102:4345–4353

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Yao L, Yokota T, Xia L, Kincade PW, McEver RP (2005) Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood 106:4093–4101

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Kisanuki YY, Kisanuki YY, Hammer RE, Hammer RE, Miyazaki J, Miyazaki J-I, Williams SC, Williams SC, Richardson JA, Richardson JA et al (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230:230–242

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    de Jong JLO, Zon LI (2005) Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 39:481–501

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Swift MR, Swift MR, Weinstein BM, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin H-F, Handin RI, Herbomel P (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25:963–975

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Tamplin OJ, Durand EM, Carr LA, Childs SJ, Hagedorn EJ, Li P, Yzaguirre AD, Speck NA, Zon LI (2015) Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 160:241–252

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Zhen F, Lan Y, Yan B, Zhang W, Wen Z (2013) Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms. Development 140:3977–3985

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Kissa K, Kissa K, Murayama E, Murayama E, Zapata A, Zapata A, Cortés A, Cortes A, Perret E, Perret E et al (2007) Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 111:1147–1156

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Aird WC, Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, Ding B-S, Schachterle W, Liu Y, Rosenwaks Z et al (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26:204–219

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    You L-R, Lin F-J, Lee CT, DeMayo FJ, Tsai M-J, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Chen X, Qin J, Cheng C-M, Tsai M-J, Tsai SY (2012) COUP-TFII is a major regulator of cell cycle and Notch signaling pathways. Mol Endocrinol 26:1268–1277

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Corada M, Corada M, Morini MF, Morini MF, Dejana E, Dejana E (2014) Signaling pathways in the specification of arteries and veins. Arterioscl Throm Vas 34:2372–2377

    CAS  Article  Google Scholar 

  37. 37.

    De Val S, Black BL (2009) Transcriptional control of endothelial cell development. Dev Cell 16:180–195

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    De Val S, De Val S (2011) Key transcriptional regulators of early vascular development. Arterioscl Throm Vas 31:1469–1475

    Article  CAS  Google Scholar 

  39. 39.

    Francois M, Koopman P, Beltrame M (2010) SoxF genes: key players in the development of the cardio-vascular system. Int J Biochem Cell B 42:445–448

    CAS  Article  Google Scholar 

  40. 40.

    Dejana E, Dejana E, TADDEI A, Taddei A, Randi AM, RANDI A (2007) Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. BBA-Rev Cancer 1775:298–312

    CAS  Google Scholar 

  41. 41.

    Heazlewood SY, Oteiza A, Cao H, Nilsson SK (2014) Analyzing hematopoietic stem cell homing, lodgment, and engraftment to better understand the bone marrow niche. Ann N Y Acad Sci 1310:119–128

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Sackstein R (2016) Fulfilling Koch's postulates in glycoscience: HCELL, GPS and translational glycobiology. Glycobiology 26:560–570

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Langer HF, Chavakis T (2009) Leukocyte-endothelial interactions in inflammation. J Cell Mol Med 13:1211–1220

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD (1996) Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell 84:563–574

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Schweitzer KM, Dräger AM, van der Valk P, Thijsen SF, Zevenbergen A, Theijsmeijer AP, van der Schoot CE, Langenhuijsen MM (1996) Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am J Pathol 148:165–175

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Mazo IB, Andrian von UH (1999) Adhesion and homing of blood-borne cells in bone marrow microvessels. J Leukoc Biol 66:25–32

    CAS  PubMed  Google Scholar 

  49. 49.

    Dimitroff CJ, Lee JY, Rafii S, Fuhlbrigge RC, Sackstein R (2001) Cd44 is a major E-selectin ligand on human hematopoietic progenitor cells. J Cell Biol 153:1277–1286

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Merzaban JS, Burdick MM, Gadhoum SZ, Dagia NM, Chu JT, Fuhlbrigge RC, Sackstein R (2011) Analysis of glycoprotein E-selectin ligands on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells. Blood 118:1774–1783

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Burdick MM, Chu JT, Godar S, Sackstein R (2006) HCELL is the major E- and L-selectin ligand expressed on LS174T colon carcinoma cells. J Biol Chem 281:13899–13905

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Katayama Y, Hidalgo A, Peired A, Frenette PS (2004) Integrin alpha4beta7 and its counterreceptor MAdCAM-1 contribute to hematopoietic progenitor recruitment into bone marrow following transplantation. Blood 104:2020–2026

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Hidalgo A, Weiss LA, Frenette PS (2002) Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally. J Clin Invest 110:559–569

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest 104:1199–1211

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Dar A, Kollet O, Lapidot T (2006) Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 34:967–975

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, Slav MM, Nagler A, Lider O, Alon R et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296

    CAS  PubMed  Google Scholar 

  58. 58.

    Frenette PS, Subbarao S, Mazo IB, Andrian von UH, Wagner DD (1998) Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. P Natl Acad Sci USA 95:14423–14428

    CAS  Article  Google Scholar 

  59. 59.

    Imai K, Kobayashi M, Wang J, Shinobu N, Yoshida H, Hamada J-I, Shindo M, Higashino F, Tanaka J, Asaka M et al (1999) Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow. Brit J Haematol 106:905–911

    CAS  Article  Google Scholar 

  60. 60.

    Carstanjen D, Gross A, Kosova N, Fichtner I, Salama A (2005) The alpha4beta1 and alpha5beta1 integrins mediate engraftment of granulocyte-colony-stimulating factor-mobilized human hematopoietic progenitor cells. Transfusion 45:1192–1200

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park S-Y, Lu J, Protopopov A, Silberstein LE (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15:1016–1016

    CAS  Article  Google Scholar 

  62. 62.

    Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K et al (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:323–328

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG et al (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Lassailly F, Lassailly F, Foster K, Foster K, Lopez-Onieva L, Lopez-Onieva L, Currie E, Currie E, Bonnet D, Bonnet D (2013) Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 122:1730–1740

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Li XM, Li X-M, Hu Z, Hu Z, Jorgenson ML, Jorgenson ML, Slayton WB, Slayton WB (2009) High levels of acetylated low-density lipoprotein uptake and low tyrosine kinase with immunoglobulin and epidermal growth factor homology domains-2 (Tie2) promoter activity distinguish sinusoids from other vessel types in murine bone marrow. Circulation 120:1910–1918

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Abboud CN (1995) Human bone marrow microvascular endothelial cells: elusive cells with unique structural and functional properties. Exp Hematol 23:1–3

    CAS  PubMed  Google Scholar 

  68. 68.

    Rafii S, Rafii S, Möhle R, Mohle R, Shapiro F, Shapiro F, Frey BM, Frey BM, Moore MA, Moore MAS (2009) Regulation of hematopoiesis by microvascular endothelium. Leukemia Lymphoma 27:375–386

    Article  Google Scholar 

  69. 69.

    Ulyanova T, Scott LM, Priestley GV, Jiang Y, Nakamoto B, Koni PA, Papayannopoulou T (2005) VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood 106:86–94

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM (2001) Molecular pathways in bone marrow homing: dominant role of alpha(4)beta(1) over beta(2)-integrins and selectins. Blood 98:2403–2411

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, Magnani JL, Lévesque J-P (2012) Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 18:1651–1657

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Kunisaki Y, Frenette PS (2014) Influences of vascular niches on hematopoietic stem cell fate. Int J Hematol 99:699–705

    PubMed  Article  Google Scholar 

  73. 73.

    Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Tesio M, Golan K, Corso S, Giordano S, Schajnovitz A, Vagima Y, Shivtiel S, Kalinkovich A, Caione L, Gammaitoni L et al (2011) Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood 117:419–428

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Golan K, Vagima Y, Ludin A, Itkin T, Cohen-Gur S, Kalinkovich A, Kollet O, Kim C, Schajnovitz A, Ovadya Y et al (2012) S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119:2478–2488

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, Matsuoka S, Miyamoto T, Ito K, Ohmura M et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1:101–112

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Celso Lo C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Côté D, Rowe DW, Lin CP, Scadden DT (2008) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96

    Article  CAS  Google Scholar 

  80. 80.

    Bixel MG, Kusumbe AP, Ramasamy SK, Sivaraj KK, Butz S, Vestweber D, Adams RH (2017) Flow dynamics and HSPC homing in bone marrow microvessels. Cell Rep 18:1804–1816

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Vogeli KM, Jin S-W, Martin GR, Stainier DYR (2006) A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443:337–339

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Florey (1966) The endothelial cell. Brit Med J 2:487–490.

  83. 83.

    Tuthill M, Hatzimichael (2010) Hematopoietic stem cell transplantation. Stem Cells and Cloning: Advances and Applications Volume 3:105–117. doi:

  84. 84.

    Gratwohl A, Baldomero H, Aljurf M, Pasquini MC, Bouzas LF, Yoshimi A, Szer J, Lipton J, Schwendener A, Gratwohl M et al (2010) Hematopoietic stem cell transplantation: a global perspective. JAMA 303:1617–1624

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Ratajczak MZ (2014) A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia 29:776–782

    PubMed  Article  Google Scholar 

  86. 86.

    Rafii S, Shapiro F, Rimarachin J, Nachman RL, Ferris B, Weksler B, Moore MA, Asch AS (1994) Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84:10–19

    CAS  PubMed  Google Scholar 

  87. 87.

    Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M et al (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6:251–264

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, Kopp H-G, Shido K, Petit I, Yanger K et al (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4:263–274

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Li W, Johnson SA, Shelley WC, Yoder MC (2004) Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp Hematol 32:1226–1237

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Chute JP, Muramoto GG, Fung J, Oxford C (2005) Soluble factors elaborated by human brain endothelial cells induce the concomitant expansion of purified human BM CD34+CD38- cells and SCID-repopulating cells. Blood 105:576–583

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Brandt JE, Galy AH, Luens KM, Travis M, Young J, Tong J, Chen S, Davis TA, Lee KP, Chen BP et al (1998) Bone marrow repopulation by human marrow stem cells after long-term expansion culture on a porcine endothelial cell line. Exp Hematol 26:950–961

    CAS  PubMed  Google Scholar 

  92. 92.

    Brandt JE, Bartholomew AM, Fortman JD, Nelson MC, Bruno E, Chen LM, Turian JV, Davis TA, Chute JP, Hoffman R (1999) Ex vivo expansion of autologous bone marrow CD34(+) cells with porcine microvascular endothelial cells results in a graft capable of rescuing lethally irradiated baboons. Blood 94:106–113

    CAS  PubMed  Google Scholar 

  93. 93.

    Chute JP, Saini AA, Kampen RL, Wells MR, Davis TA (1999) A comparative study of the cell cycle status and primitive cell adhesion molecule profile of human CD34+ cells cultured in stroma-free versus porcine microvascular endothelial cell cultures. Exp Hematol 27:370–379

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Li N, Eljaafari A, Bensoussan D, Wang Y, Latger-Cannard V, Serrurier B, Boura C, Kennel A, Stoltz J, Feugier P (2006) Human umbilical vein endothelial cells increase ex vivo expansion of human CD34(+) PBPC through IL-6 secretion. Cytotherapy 8:335–342

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Yildirim S, Boehmler AM, Kanz L, Möhle R (2005) Expansion of cord blood CD34+ hematopoietic progenitor cells in coculture with autologous umbilical vein endothelial cells (HUVEC) is superior to cytokine-supplemented liquid culture. Bone Marrow Transpl 36:71–79

    CAS  Article  Google Scholar 

  97. 97.

    Salter AB, Meadows SK, Muramoto GG, Himburg H, Doan P, Daher P, Russell L, Chen B, Chao NJ, Chute JP (2009) Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113:2104–2107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Chute JP, Muramoto GG, Salter AB, Meadows SK, Rickman DW, Chen B, Himburg HA, Chao NJ (2007) Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood 109:2365–2372

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Li B, Bailey AS, Jiang S, Liu B, Goldman DC, Fleming WH (2010) Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem Cell Res 4:17–24

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    Raynaud CM, Butler JM, Halabi NM, Ahmad FS, Ahmed B, Rafii S, Rafii A (2013) Endothelial cells provide a niche for placental hematopoietic stem/progenitor cell expansion through broad transcriptomic modification. Stem Cell Res 11:1074–1090

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Seandel M, Butler JM, Kobayashi H, Hooper AT, White IA, Zhang F, Vertes EL, Kobayashi M, Zhang Y, Shmelkov SV et al (2008) Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. P Natl Acad Sci USA 105:19288–19293

    CAS  Article  Google Scholar 

  102. 102.

    Hadland BK, Varnum-Finney B, Poulos MG, Moon RT, Butler JM, Rafii S, Bernstein ID (2015) Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells. J Clin Invest 125:2032–2045

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Poulos MG, Crowley MJP, Gutkin MC, Ramalingam P, Schachterle W, Thomas J-L, Elemento O, Butler JM (2015) Vascular platform to define hematopoietic stem cell factors and enhance regenerative hematopoiesis. Stem Cell Reports 5:881–894

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Butler JM, Gars EJ, James DJ, Nolan DJ, Scandura JM, Rafii S (2012) Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood 120:1344–1347

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Gori JL, Butler JM, Kunar B, Poulos MG, Ginsberg M, Nolan DJ, Norgaard ZK, Adair JE, Rafii S, Kiem H-P (2017) Endothelial cells promote expansion of long-term engrafting marrow hematopoietic stem and progenitor cells in primates. Stem Cells Transl Med 6:864–876

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA (2005) Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 11:886–891

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Gu Y, Filippi M-D, Cancelas JA, Siefring JE, Williams EP, Jasti AC, Harris CE, Lee AW, Prabhakar R, Atkinson SJ et al (2003) Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302:445–449

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Wu W, Kim CH, Liu R, Kucia M, Marlicz W, Greco N, Ratajczak J, Laughlin MJ, Ratajczak MZ (2011) The bone marrow-expressed antimicrobial cationic peptide LL-37 enhances the responsiveness of hematopoietic stem progenitor cells to an SDF-1 gradient and accelerates their engraftment after transplantation. Leukemia 26:736–745

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Capitano ML, Hangoc G, Cooper S, Broxmeyer HE (2015) Mild heat treatment primes human CD34(+) cord blood cells for migration toward SDF-1α and enhances engraftment in an NSG mouse model. Stem Cells 33:1975–1984

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, Mills M, Wanzeck J, Janowska-Wieczorek A, Ratajczak MZ (2005) Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 105:40–48

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Moghaddam F, Oodi A, Nikougoftar Zarif M, Amani M, Amirizadeh N (2016) Expression of CXCR4 in cord blood-derived CD133+ cells treated with platelet micro-particles. Artif Cell Nanomed B 44:1702–1707

    CAS  Article  Google Scholar 

  112. 112.

    Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, Ratajczak J, Emerson SG, Kowalska MA, Ratajczak MZ (2001) Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98:3143–3149

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang I-H, Grosser T et al (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Hoggatt J, Singh P, Sampath J, Pelus LM (2009) Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113:5444–5455

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Goessling W, Allen RS, Guan X, Jin P, Uchida N, Dovey M, Harris JM, Metzger ME, Bonifacino AC, Stroncek D et al (2011) Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 8:445–458

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, Pelus LM, Desponts C, Chen Y-B, Rezner B et al (2013) Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122:3074–3081

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Broxmeyer HE, Pelus LM (2014) Inhibition of DPP4/CD26 and dmPGE2 treatment enhances engraftment of mouse bone marrow hematopoietic stem cells. Blood Cell Mol Dis 53:34–38

    CAS  Article  Google Scholar 

  118. 118.

    Gul H, Marquez-Curtis LA, Jahroudi N, Lo J, Turner AR, Janowska-Wieczorek A (2009) Valproic acid increases CXCR4 expression in hematopoietic stem/progenitor cells by chromatin remodeling. Stem Cells Dev 18:831–838

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Yoo E, Paganessi LA, Alikhan WA, Paganessi EA, Hughes F, Fung HC, Rich E, Seong CM, Christopherson KW (2013) Loss of CD26 protease activity in recipient mice during hematopoietic stem cell transplantation results in improved transplant efficiency. Transfusion 53:878–887

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Christopherson KW, Hangoc G, Mantel CR, Broxmeyer HE (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305:1000–1003

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Xia L, McDaniel JM, Yago T, Doeden A, McEver RP (2004) Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 104:3091–3096

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01HL04880, P01HL032262, P30DK049216, R01DK53298, U01HL10001, and R24DK092760. In addition, L.I.Z. is a Howard Hughes Medical Institute investigator, J.R.P. is an American Cancer Society postdoctoral fellow, and A.S. is supported by a Boehringer Ingelheim Fonds PhD fellowship. We also thank Anne L. Robertson and Elliott J. Hagedorn for helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leonard I. Zon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perlin, J.R., Sporrij, A. & Zon, L.I. Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. J Mol Med 95, 809–819 (2017). https://doi.org/10.1007/s00109-017-1559-8

Download citation

Keywords

  • Hematopoietic stem cell
  • Endothelial cell
  • Stem cell niche
  • Hematopoietic stem cell transplantation
  • Homing
  • Engraftment