Liu L, Eisen HJ (2014) Epidemiology of heart failure and scope of the problem. Cardiol Clin 32:1–8 vii
CAS
Article
PubMed
Google Scholar
Distefano G, Sciacca P (2012) Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure. Ital J Pediatr 38:41
Article
PubMed
PubMed Central
Google Scholar
ter Horst P, Smits JF, Blankesteijn WM (2012) The Wnt/frizzled pathway as a therapeutic target for cardiac hypertrophy: where do we stand? Acta Physiol (Oxf) 204:110–117
Article
Google Scholar
Dawson K, Aflaki M, Nattel S (2013) Role of the Wnt-frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. J Physiol 591:1409–1432
Article
PubMed
Google Scholar
Tao H, Yang J-J, Shi K-H, Li J (2016) Wnt signaling pathway in cardiac fibrosis: new insights and directions. Metabolism 65:30–40
CAS
Article
PubMed
Google Scholar
Lerner UH, Ohlsson C (2015) The WNT system: background and its role in bone. J Intern Med 277:630–649
CAS
Article
PubMed
Google Scholar
Bikkavilli RK, Malbon CC (2009) Mitogen-activated protein kinases and Wnt/beta-catenin signaling: molecular conversations among signaling pathways. Commun Integr Biol 2:46–49
CAS
Article
PubMed
PubMed Central
Google Scholar
Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115
Article
PubMed
PubMed Central
Google Scholar
Kikuchi A, Yamamoto H, Sato A, Matsumoto S (2012) Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf) 204:17–33
CAS
Article
Google Scholar
Bhatt PM, Malgor R (2014) Wnt5a: a player in the pathogenesis of atherosclerosis and other inflammatory disorders. Atherosclerosis 237:155–162
CAS
Article
PubMed
PubMed Central
Google Scholar
Hagenmueller M, Riffel JH, Bernhold E, Fan J, Katus HA, Hardt SE (2014) Dapper-1 is essential for Wnt5a induced cardiomyocyte hypertrophy by regulating the Wnt/PCP pathway. FEBS Lett 588:2230–2237
CAS
Article
PubMed
Google Scholar
Laeremans H, Hackeng TM, van Zandvoort MA, Thijssen VL, Janssen BJ, Ottenheijm HC, Smits JF, Blankesteijn WM (2011) Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation 124:1626–1635
CAS
Article
PubMed
Google Scholar
Hermans K, Uitterdijk A, de Wijs-Meijler D, Daskalopoulos E, Verzijl A, Sneep S, Blonden L, Reiss I, Duncker D, Blankesteijn WM et al (2015) UM206, a Peptide Fragment of Wnt5a, Attenuates Adverse Remodeling after Myocardial Infarction in Swine. The FASEB Journal 29
Newman DR, Sills WS, Hanrahan K, Ziegler A, Tidd KM, Cook E, Sannes PL (2016) Expression of WNT5A in idiopathic pulmonary fibrosis and its control by TGF-beta and WNT7B in human lung fibroblasts. J Histochem Cytochem 64:99–111
CAS
Article
PubMed
Google Scholar
Vuga LJ, Ben-Yehudah A, Kovkarova-Naumovski E, Oriss T, Gibson KF, Feghali-Bostwick C, Kaminski N (2009) WNT5A is a regulator of fibroblast proliferation and resistance to apoptosis. Am J Respir Cell Mol Biol 41:583–589
CAS
Article
PubMed
PubMed Central
Google Scholar
Mizutani M, Wu JC, Nusse R (2016) Fibrosis of the neonatal mouse heart after cryoinjury is accompanied by Wnt signaling activation and Epicardial-to-mesenchymal transition. J Am Heart Assoc 4:e002457
Article
Google Scholar
Norum HM, Gullestad L, Abraityte A, Broch K, Aakhus S, Aukrust P, Ueland T (2016) Increased serum levels of the notch ligand DLL1 are associated with diastolic dysfunction, reduced exercise capacity, and adverse outcome in chronic heart failure. J Card Fail 22:218–223
CAS
Article
PubMed
Google Scholar
Zhou Y-Y, Wang S-Q, Zhu W-Z, Chruscinski A, Kobilka BK, Ziman B, Wang S, Lakatta EG, Cheng H, Xiao R-P (2000) Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am J Physiol Heart Circ Physiol 279:H429–H436
CAS
PubMed
Google Scholar
Ohm IK, Alfsnes K, Belland Olsen M, Ranheim T, Sandanger O, Dahl TB, Aukrust P, Finsen AV, Yndestad A, Vinge LE (2014) Toll-like receptor 9 mediated responses in cardiac fibroblasts. PLoS One 9:e104398
Article
PubMed
PubMed Central
Google Scholar
Askevold ET, Aukrust P, Nymo SH, Lunde IG, Kaasboll OJ, Aakhus S, Florholmen G, Ohm IK, Strand ME, Attramadal H et al (2014) The cardiokine secreted frizzled-related protein 3, a modulator of Wnt signalling, in clinical and experimental heart failure. J Intern Med 275:621–630
CAS
Article
PubMed
Google Scholar
Korn C, Scholz B, Hu J, Srivastava K, Wojtarowicz J, Arnsperger T, Adams RH, Boutros M, Augustin HG, Augustin I (2014) Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis. Development 141:1757–1766
CAS
Article
PubMed
Google Scholar
Tong L, Smyth D, Kerr C, Catterall J, Richards CD (2004) Mitogen-activated protein kinases Erk1/2 and p38 are required for maximal regulation of TIMP-1 by oncostatin M in murine fibroblasts. Cell Signal 16:1123–1132
CAS
Article
PubMed
Google Scholar
Rauner M, Stein N, Winzer M, Goettsch C, Zwerina J, Schett G, Distler JH, Albers J, Schulze J, Schinke T et al (2012) WNT5A is induced by inflammatory mediators in bone marrow stromal cells and regulates cytokine and chemokine production. J Bone Miner Res 27:575–585
CAS
Article
PubMed
Google Scholar
Wawrzak D, Metioui M, Willems E, Hendrickx M, de Genst E, Leyns L (2007) Wnt3a binds to several sFRPs in the nanomolar range. Biochem Biophys Res Commun 357:1119–1123
CAS
Article
PubMed
Google Scholar
Wu D, Talbot CC, Liu Q, Jing Z-C, Damico RL, Tuder R, Barnes KC, Hassoun PM, Gao L (2016) Identifying microRNAs targeting Wnt/β-catenin pathway in end-stage idiopathic pulmonary arterial hypertension. J Mol Med 94:875–885
CAS
Article
PubMed
Google Scholar
Boucherat O, Bonnet S (2016) MicroRNA signature of end-stage idiopathic pulmonary arterial hypertension: clinical correlations and regulation of WNT signaling. J Mol Med (Berl) 94:849–851
Article
Google Scholar
Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW et al (2006) Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114:1883–1891
Article
PubMed
Google Scholar
Shimoda LA, Laurie SS (2013) Vascular remodeling in pulmonary hypertension. J Mol Med (Berl) 91:297–309
CAS
Article
Google Scholar
Burlew BS, Weber KT (2002) Cardiac fibrosis as a cause of diastolic dysfunction. Herz 27:92–98
Article
PubMed
Google Scholar
Li X, Yamagata K, Nishita M, Endo M, Arfian N, Rikitake Y, Emoto N, Hirata K, Tanaka Y, Minami Y (2013) Activation of Wnt5a-Ror2 signaling associated with epithelial-to-mesenchymal transition of tubular epithelial cells during renal fibrosis. Genes Cells 18:608–619
CAS
Article
PubMed
Google Scholar
Hartford M, Wiklund O, Mattsson Hulten L, Persson A, Karlsson T, Herlitz J, Caidahl K (2007) C-reactive protein, interleukin-6, secretory phospholipase A2 group IIA and intercellular adhesion molecule-1 in the prediction of late outcome events after acute coronary syndromes. J Intern Med 262:526–536
CAS
Article
PubMed
Google Scholar
Fontes JA, Rose NR, Cihakova D (2015) The varying faces of IL-6: from cardiac protection to cardiac failure. Cytokine 74:62–68
CAS
Article
PubMed
PubMed Central
Google Scholar
Lindsay MM, Maxwell P, Dunn FG (2002) TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 40:136–141
CAS
Article
PubMed
Google Scholar
Heymans S, Schroen B, Vermeersch P, Milting H, Gao F, Kassner A, Gillijns H, Herijgers P, Flameng W, Carmeliet P et al (2005) Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 112:1136–1144
CAS
Article
PubMed
Google Scholar
Jordan A, Roldan V, Garcia M, Monmeneu J, de Burgos FG, Lip GY, Marin F (2007) Matrix metalloproteinase-1 and its inhibitor, TIMP-1, in systolic heart failure: relation to functional data and prognosis. J Intern Med 262:385–392
CAS
Article
PubMed
Google Scholar
Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:15
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheng M, Wu G, Song Y, Wang L, Tu L, Zhang L, Zhang C (2016) Celastrol-induced suppression of the MiR-21/ERK Signalling pathway attenuates cardiac fibrosis and dysfunction. Cell Physiol Biochem 38:1928–1938
CAS
Article
PubMed
Google Scholar
Nakashima A, Tamura M (2006) Regulation of matrix metalloproteinase-13 and tissue inhibitor of matrix metalloproteinase-1 gene expression by WNT3A and bone morphogenetic protein-2 in osteoblastic differentiation. Front Biosci 11:1667–1678
CAS
Article
PubMed
Google Scholar
Ozeki N, Yamaguchi H, Hase N, Hiyama T, Kawai R, Kondo A, Nakata K, Mogi M (2015) Polyphosphate-induced matrix metalloproteinase-3-mediated proliferation in rat dental pulp fibroblast-like cells is mediated by a Wnt5 signaling cascade. Biosci Trends 9:160–168
Article
PubMed
Google Scholar
Jung YS, Lee HY, Kim SD, Park JS, Kim JK, Suh PG, Bae YS (2013) Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils. Exp Mol Med 45:e27
Article
PubMed
Google Scholar
Katula KS, Joyner-Powell NB, Hsu CC, Kuk A (2012) Differential regulation of the mouse and human Wnt5a alternative promoters A and B. DNA Cell Biol 31:1585–1597
CAS
Article
PubMed
PubMed Central
Google Scholar
Bai C, Li X, Gao Y, Lu T, Wang K, Li Q, Xiong H, Chen J, Zhang P, Wang W et al (2014) MicroRNAs regulate the Wnt/Ca2+ signaling pathway to promote the secretion of insulin in pancreatic nestin-positive progenitor cells. bioRxiv. doi:10.1101/003913
Google Scholar
Chen QY, Jiao DM, Zhu Y, Hu H, Wang J, Tang X, Chen J, Yan L (2016) Identification of carcinogenic potential-associated molecular mechanisms in CD133(+) A549 cells based on microRNA profiles. Tumour Biol 37:521–530
CAS
Article
PubMed
Google Scholar
Zhang Y, Liu Z, Zhou M, Liu C (2016) MicroRNA-129-5p inhibits vascular smooth muscle cell proliferation by targeting Wnt5a. Exp Ther Med 12:2651–2656
CAS
PubMed
PubMed Central
Google Scholar
Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, Johnson I, Antigny F, Tremblay E, Breuils-Bonnet S, Perros F et al (2015) miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 309:C363–C372
CAS
Article
PubMed
Google Scholar
Tsutsui H, Kinugawa S, Matsushima S (2008) Oxidative stress and mitochondrial DNA damage in heart failure. Circ J 72 Suppl A: A31-37
Potus F, Ruffenach G, Dahou A, Thebault C, Breuils-Bonnet S, Tremblay E, Nadeau V, Paradis R, Graydon C, Wong R et al (2015) Downregulation of MicroRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 132:932–943
CAS
Article
PubMed
Google Scholar
Sutendra G, Dromparis P, Paulin R, Zervopoulos S, Haromy A, Nagendran J, Michelakis ED (2013) A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med (Berl) 91:1315–1327
CAS
Article
Google Scholar
Askevold ET, Gullestad L, Nymo S, Kjekshus J, Yndestad A, Latini R, Cleland JG, McMurray JJ, Aukrust P, Ueland T (2015) Secreted frizzled related protein 3 in chronic heart failure: analysis from the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). PLoS One 10:e0133970
Article
PubMed
PubMed Central
Google Scholar