Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders

Abstract

Tibetans have lived at high altitude for generations and are thought to be genetically adapted to hypoxic environments. Most are protected from hypoxia-induced polycythemia, and a haplotype of EPAS1, encoding hypoxia-inducible factor (HIF-2α), has been associated with lower hemoglobin levels. We earlier reported a Tibetan-specific EGLN1 haplotype encoding PHD2 which abrogates HIF augmentation in hypoxia. We genotyped 347 Tibetan individuals from varying altitudes for both the Tibetan-specific EGLN1 haplotype and 10 candidate SNPs in the EPAS1 haplotype and correlated their association with hemoglobin levels. The effect of the EGLN1 haplotype on hemoglobin exhibited age dependency at low altitude, while at higher altitudes, it showed a trend to lower hemoglobin levels in the presence of the Tibetan-selected EPAS1 rs142764723 C/C allele. The observed gene-environment and gene-gene interactions and the moderate effect of the EGLN1 and EPAS1 haplotypes on hemoglobin indicate that other modifiers exist. It remains to be determined whether a blunting of erythropoiesis or other physiological consequences of HIF downregulation are the primary drivers of these genetic adaptations among Tibetans.

Key message

  • Most Tibetans are protected from polycythemia while living in high altitude.

  • An EGLN1 co-adapted haplotype, EGLN1 c.12C>G, c.380G>C is uniquely Tibetan.

  • The Tibetan EPAS1 haplotype has introgressed from the Denisovan genome.

  • While EGLN1 and EPAS1 genotypes lower Hb, this study indicates additional Hb modifiers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    West JB (1996) Prediction of barometric pressures at high altitude with the use of model atmospheres. J Appl Physiol (1985) 81(4):1850–1854

    CAS  Google Scholar 

  2. 2.

    Beall CM, Blangero J, Williams-Blangero S, Goldstein MC (1994) Major gene for percent of oxygen saturation of arterial hemoglobin in Tibetan highlanders. Am J Phys Anthropol 95(3):271–276

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Moore LG, Niermeyer S, Zamudio S (1998) Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol Suppl 27:25–64

    Article  Google Scholar 

  4. 4.

    Wu T, Wang X, Wei C, Cheng H, Wang X, Li Y, Ge D, Zhao H, Young P, Li G et al (2005) Hemoglobin levels in Qinghai-Tibet: different effects of gender for Tibetans vs. Han. J Appl Physiol (1985) 98(2):598–604

    CAS  Article  Google Scholar 

  5. 5.

    Beall CM, Brittenham GM, Strohl KP, Blangero J, Williams-Blangero S, Goldstein MC, Decker MJ, Vargas E, Villena M, Soria R et al (1998) Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. Am J Phys Anthropol 106(3):385–400

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Winslow RM, Chapman KW, Gibson CC, Samaja M, Monge CC, Goldwasser E, Sherpa M, Blume FD, Santolaya R (1989) Different hematologic responses to hypoxia in Sherpas and Quechua Indians. J Appl Physiol (1985) 66 (4):1561–1569

  7. 7.

    Simonson TS, McClain DA, Jorde LB, Prchal JT (2012) Genetic determinants of Tibetan high-altitude adaptation. Hum Genet 131(4):527–533

    Article  PubMed  Google Scholar 

  8. 8.

    Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS et al (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329(5987):75–78

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M et al (2010) Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A 107(25):11459–11464

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, Lopez Herraez D et al (2010) Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet 6(9):e1001116

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Huerta-Sanchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M et al (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512(7513):194–197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Lorenzo FR, Simonson TS, Yang Y, Ge RL, Prchal JT (2012) A novel PHD2 mutation associated with tibetan genetic adaptation to high altitude hypoxia. In: American Society of Hematology, Orlando, FL

  15. 15.

    Lorenzo FR, Huff C, Myllymaki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA et al (2014) A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet 46(9):951–956

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50(7):1156–1164

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Moore LG, Young D, McCullough RE, Droma T, Zamudio S (2001) Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude. Am J Hum Biol 13(5):635–644

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Torroni A, Miller JA, Moore LG, Zamudio S, Zhuang J, Droma T, Wallace DC (1994) Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. Am J Phys Anthropol 93(2):189–199

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Hu H ST, Glusman G, Roach JC, Cavalleri G, Brunkow ME, McCormack M, Petousi N, Lorenzo FL, Gelinas R, Jorde LB et al. (2013) Insights on the evolutionary history of Tibetans from whole-genome sequence data. In: Annual Cold Spring Harbor Biology of Genomes Meeting, Cold Spring Harbor, NY

  20. 20.

    Grossman S, Shlyakhter I, Karlsson E, Byrne E, Morales S et al (2010) A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327(5967):883–886

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Cox DR (2006) Principles of statistical inference. Cambridge University Press, Cambridge

    Google Scholar 

  22. 22.

    R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  23. 23.

    Ravasi G, Pelucchi S, Greni F, Mariani R, Giuliano A, Parati G, Silvestri L, Piperno A (2014) Circulating factors are involved in hypoxia-induced hepcidin suppression. Blood Cells Mol Dis 53(4):204–210

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Talbot NP, Lakhal S, Smith TG, Privat C, Nickol AH, Rivera-Ch M, Leon-Velarde F, Dorrington KL, Mole DR, Robbins PA (2012) Regulation of hepcidin expression at high altitude. Blood 119(3):857–860

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Leon-Velarde F, Maggiorini M, Reeves JT, Aldashev A, Asmus I, Bernardi L, Ge RL, Hackett P, Kobayashi T, Moore LG et al (2005) Consensus statement on chronic and subacute high altitude diseases. High Alt Med Biol 6(2):147–157

    Article  PubMed  Google Scholar 

  26. 26.

    Niermeyer S, Tobin A, Schoen E, Carter T, Klein JD (2015) A new commitment to newborn survival. Pediatrics. doi:10.1542/peds.2014-3185

    Google Scholar 

  27. 27.

    Gonzales GF, Steenland K, Tapia V (2009) Maternal hemoglobin level and fetal outcome at low and high altitudes. Am J Physiol Regul Integr Comp Physiol 297(5):R1477–R1485

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the use of laboratory facilities of the Research Center for High Altitude Medicine at Qinghai University, Xining, China; the Regional Center for Biotechnology, Government of India, Gurgaon, India; and the Tibet Institute of Medical Sciences, Lhasa, Tibet Autonomous Region, China.

TB was supported by project “Increasing Opportunities for Career Growth in Research and Development in the Field of Medical Sciences,” ITMS: 26110230067. Ge RiLi is supported by National Basic Research Program (NBRP# 2012CB518200, PIS&T # 0S2012GR0195) and National Natural Science Foundation of China (# 30393133). JP is supported by NIH-P01CA108671, VA Merit Review Award and University of Utah Seed Grant Program for studies of hypoxic adaptation. The Colorado cohort study materials were made possible by NSF BNS-8919645 and DAMD 17-87-C-7202 grants to Lorna G. Moore.

We thank Robert Pryor for developing the double-layer capillary tube method used to genotype EGLN1 c.12C>G.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Josef T. Prchal or RiLi Ge.

Ethics declarations

Written informed consent was obtained from all participants and institutional review board approval by each collaborating group was also obtained.

Conflict of interest

The authors declare that they have no conflict of interest to declare.

Additional information

Victor R. Gordeuk, Josef T. Prchal, and RiLi Ge contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 841 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tashi, T., Scott Reading, N., Wuren, T. et al. Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders. J Mol Med 95, 665–670 (2017). https://doi.org/10.1007/s00109-017-1519-3

Download citation

Keywords

  • High altitude
  • Genetic adaptation
  • Polycythemia
  • Hypoxia
  • High-resolution melting assay