Skip to main content
Log in

Nitric oxide mediates prolyl hydroxylase 3 expression in mesangial cells and in glomerulonephritis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Renal mesangial cells are regarded as main players in glomerular inflammatory diseases. To investigate a possible crosstalk between inflammatory and hypoxia-driven signaling processes, we stimulated cultured mouse mesangial cells with different inflammatory agents and analyzed the expression of prolyl hydroxylase domain containing proteins (PHDs), the main regulators of hypoxia-inducible factor (HIF) stability. Administration of IL-1β (1 nM) and TNF-α (1 nM), a combination further referred to as cytokine mix (CM), resulted in a fivefold increase in PHD3 but not PHD1 and PHD2 mRNA expression compared to untreated controls. In contrast, a combination of IL-1β, TNF-α with lipopolysaccharide (10 μg/ml), and interferon-γ (20 ng/ml) designated as CM+ showed a high (60-fold) induction of PHD3 and a moderate (twofold) induction of PHD2 mRNA expression. Interestingly, CM+ but not CM induced the expression of inducible NO synthase and endogenously produced NO was responsible for the immense induction of PHD3 in mesangial cells treated with CM+. We found that CM+ affected PHD3 expression mainly via the NO/HIF axis, whereas PHD3 regulation by CM occurred in a NF-κB-dependent manner. In turn, silencing of PHD3 expression resulted in a decrease in the mRNA expression of ICAM-1, MIP-2, MCP-1, and CXCL-10, which are under control of NF-κB. In a rat model of mesangio-proliferative glomerulonephritis, PHD3 mRNA and protein expression was markedly induced and this effect was nearly abolished when rats were treated with the iNOS-specific inhibitor L-NIL, thus confirming our findings also in vivo.

Key message

  • PHD3 expression induced by cytokines is NF-κB dependent in mesangial cells.

  • Endogenously produced NO further augments PHD3 expression via HIF-1α.

  • PHD3 expression is induced by NO in anti-Thy-1 glomerulonephritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pfeilschifter J, Beck KF, Eberhardt W, Huwiler A (2002) Changing gears in the course of glomerulonephritis by shifting superoxide to NO-dominated chemistry. Kidney Int 61:809–815

    Article  CAS  PubMed  Google Scholar 

  2. Schlöndorff D, Banas B (2009) The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 20:1179–1187

    Article  PubMed  Google Scholar 

  3. Pfeilschifter J, Schwarzenbach H (1990) Interleukin 1 and tumor necrosis factor stimulate cGMP formation in rat renal mesangial cells. FEBS Lett 273:185–187

    Article  CAS  PubMed  Google Scholar 

  4. Nicolson AG, Haites NE, McKay NG, Wilson HM, MacLeod AM, Benjamin N (1993) Induction of NO synthase in human mesangial cells. Biochem Biophys Res Commun 193:1269–1274

    Article  CAS  PubMed  Google Scholar 

  5. Mühl H, Kunz D, Pfeilschifter J (1994) Expression of NO synthase in rat glomerular mesangial cells mediated by cyclic AMP. Br J Pharmacol 112:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mühl H, Pfeilschifter J (1995) Amplification of NO synthase expression by NO in interleukin 1 beta-stimulated rat mesangial cells. J Clin Invest 95:1941–1946

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beck KF, Eberhardt W, Walpen S, Apel M, Pfeilschifter J (1998) Potentiation of NO synthase expression by superoxide in interleukin 1 beta-stimulated rat mesangial cells. FEBS Lett 435:35–38

    Article  CAS  PubMed  Google Scholar 

  8. Mühl H, Sandau K, Brüne B, Briner VA, Pfeilschifter J (1996) NO donors induce apoptosis in glomerular mesangial cells, epithelial cells and endothelial cells. Eur J Pharmacol 317:137–149

    Article  PubMed  Google Scholar 

  9. Hruby Z, Beck KF (1997) Cytotoxic effect of autocrine and macrophage-derived NO on cultured rat mesangial cells. Clin Exp Immunol 107:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pilz RB, Casteel DE (2003) Regulation of gene expression by cyclic GMP. Circ Res 93:1034–1046

    Article  CAS  PubMed  Google Scholar 

  11. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  CAS  PubMed  Google Scholar 

  12. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  CAS  PubMed  Google Scholar 

  13. Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16:1151–1162

    Article  CAS  PubMed  Google Scholar 

  14. Kim SB, Kang SA, Park JS, Lee JS, Hong CD (1996) Effects of hypoxia on the extracellular matrix production of cultured rat mesangial cells. Nephron 72:275–280

    Article  CAS  PubMed  Google Scholar 

  15. Eng E, Holgren C, Hubchak S, Naaz P, Schnaper HW (2005) Hypoxia regulates PDGF-B interactions between glomerular capillary endothelial and mesangial cells. Kidney Int 68:695–703

    Article  CAS  PubMed  Google Scholar 

  16. Petry C, Huwiler A, Eberhardt W, Kaszkin M, Pfeilschifter J (2005) Hypoxia increases group IIA phospholipase A(2) expression under inflammatory conditions in rat renal mesangial cells. J Am Soc Nephrol 16:2897–2905

    Article  CAS  PubMed  Google Scholar 

  17. Dehne N, Brüne B (2009) HIF-1 in the inflammatory microenvironment. Exp Cell Res 315:1791–1797

    Article  CAS  PubMed  Google Scholar 

  18. Cummins EP, Keogh CE, Crean D, Taylor CT (2016) The role of HIF in immunity and inflammation. Mol Asp Med 47-48:24–34

    Article  CAS  Google Scholar 

  19. Bonello S, Zähringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T, Görlach A (2007) Reactive oxygen species activate the HIF-1alpha promoter via a functional NF-kappaB site. Arterioscler Thromb Vasc Biol 27:755–761

    Article  CAS  PubMed  Google Scholar 

  20. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NFkappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J et al (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci U S A 103:18154–18159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xue J, Li X, Jiao S, Wei Y, Wu G, Fang J (2010) Prolyl hydroxylase-3 is down-regulated in colorectal cancer cells and inhibits IKKbeta independent of hydroxylase activity. Gastroenterology 138:606–615

    Article  CAS  PubMed  Google Scholar 

  23. Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, Cole CH, Yu X, Hay RT, Ley SC et al (2006) Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci U S A 103:14767–14772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scholz CC, Cavadas MA, Tambuwala MM, Hams E, Rodríguez J, von Kriegsheim A, Cotter P, Bruning U, Fallon PG, Cheong A et al (2013) Regulation of IL-1β-induced NF-κB by hydroxylases links key hypoxic and inflammatory signaling pathways. Proc Natl Acad Sci U S A 110:18490–18495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hofmann L, Ren S, Schwalm S, Pfeilschifter J, Huwiler A (2008) Sphingosine kinase 1 and 2 regulate the capacity of mesangial cells to resist apoptotic stimuli in an opposing manner. Biol Chem 389:1399–1407

    Article  CAS  PubMed  Google Scholar 

  26. Gong J, Traganos F, Darzynkiewicz Z (1994) A selective procedure for DNA extraction from apoptotic cells applicable for gel electro- phoresis and flow cytometry. Anal Biochem 218:314–319

    Article  CAS  PubMed  Google Scholar 

  27. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. JImmunolMethods 65:55–63

    CAS  Google Scholar 

  28. Schaefer L, Hausser H, Altenburger M, Ugorcakova J, August C, Fischer LW, Scaefer RM, Kresse H (1998) Decorin, biglycan and their endocytosis receptor in rat renal cortex. Kidney Int 54:1529–1541

    Article  CAS  PubMed  Google Scholar 

  29. Schaefer L, Babelova A, Kiss E, Hausser H, Baliova M, Krzyzanlova M, Marsche G, Young MF, Mihalik D, Götte M et al (2005) The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J Clin Invest 115:2223–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landázuri MO, Del Peso L (2005) Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J 390:189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brüne B, Zhou J (2007) NO and superoxide: interference with hypoxic signaling. Cardiovasc Res 75:275–282

    Article  PubMed  Google Scholar 

  32. Yu Z, Zhang W, Kone BC (2002) Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. Biochem J 367:97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bagchus WM, Hoedemaeker PJ, Rozing J, Bakker WW (1986) Glomerulonephritis induced by monoclonal anti-thy 1.1 antibodies. A sequential histological and ultrastructural study in the rat. Lab Investig 55:680–687

    CAS  PubMed  Google Scholar 

  34. Beck KF, Güder G, Schaefer L, Pleskova M, Babelova A, Behrens MH, Mihalik D, Beck M, Schaefer RM, Pfeilschifter J (2005) NO upregulates induction of PDGF receptor-alpha expression in rat renal mesangial cells and in anti-thy-1 glomerulonephritis. J Am Soc Nephrol 16:1948–1957

    Article  CAS  PubMed  Google Scholar 

  35. Walpen S, Beck KF, Schaefer L, Raslik I, Eberhardt W, Schaefer RM, Pfeilschifter J (2001) NO induces MIP-2 transcription in rat renal mesangial cells and in a rat model of glomerulonephritis. FASEB J 15:571–573

    CAS  PubMed  Google Scholar 

  36. Fujita N, Gogate SS, Chiba K, Toyama Y, Shapiro IM, Risbud MV (2012) Prolyl hydroxylase 3 (PHD3) modulates catabolic effects of tumor necrosis factor-α (TNF-α) on cells of the nucleus pulposus through co-activation of nuclear factor κB (NF-κB)/p65 signaling. J Biol Chem 287:39942–39953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eberhardt W, Kunz D, Hummel R, Pfeilschifter J (1996) Molecular cloning of the rat inducible NO synthase gene promoter. Biochem Biophys Res Commun 223:752–756

    Article  CAS  PubMed  Google Scholar 

  38. Beck KF, Sterzel RB (1996) Cloning and sequencing of the proximal promoter of the rat iNOS gene: activation of NFkappaB is not sufficient for transcription of the iNOS gene in rat mesangial cells. FEBS Lett 394:263–267

    Article  CAS  PubMed  Google Scholar 

  39. Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J (2007) NO modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem 282:1788–1796

    Article  CAS  PubMed  Google Scholar 

  40. Xie L, Pi X, Wang Z, He J, Willis MS, Patterson C (2015) Depletion of PHD3 protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. J Mol Cell Cardiol 80:156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Swain L, Wottawa M, Hillemann A, Beneke A, Odagiri H, Terada K, Endo M, Oike Y, Farhat K, Katschinski DM (2014) Prolyl-4-hydroxylase domain 3 (PHD3) is a critical terminator for cell survival of macrophages under stress conditions. J Leukoc Biol 96(3):365–375

    Article  PubMed  Google Scholar 

  42. Henze AT, Garvalov BK, Seidel S, Cuesta AM, Ritter M, Filatova A, Foss F, Dopeso H, Essmann CL, Maxwell PH, Reifenberger G, Carmeliet P, Acker-Palmer A, Acker T (2014) Loss of PHD3 allows tumors to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun 25(5):5582

    Article  Google Scholar 

  43. Oliver KM, Garvey JF, Ng CT, Veale DJ, Fearon U, Cummins EP, Taylor CT (2009) Hypoxia activates NF-kappaB-dependent gene expression through the canonical signaling pathway. Antioxid Redox Signal 11:2057–2064

    Article  CAS  PubMed  Google Scholar 

  44. Kiss J, Mollenhauer M, Walmsley SR, Kirchberg J, Radhakrishnan P, Niemietz T, Dudda J, Steinert G, Whyte MK, Carmeliet P, Mazzone M, Weitz J, Schneider M (2012) Loss of the oxygen sensor PHD3enhances the innate immune response to abdominal sepsis. J Immunol 189(4):1955–1965

    Article  CAS  PubMed  Google Scholar 

  45. Chen YM, Chiang WC, Yang Y, Lai CF, Wu KD, Lin SL (2015) Pentoxifylline attenuates proteinuria in anti-Thy1 glomerulonephritis via downregulation of nuclear factor-κB and Smad2/3 signaling. Mol Med 21:276–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schödel J, Bohr D, Klanke B, Schley G, Schlötzer-Schrehardt U, Warnecke C, Kurtz A, Amann K, Eckardt KU, Willam C (2010) Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells. Kidney Int 78:857–867

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ute Schmidt and Riad Haceni for valuable technical support and Dr. Miriam Pleskova for performing experiments with rat mesangial cells. The work was supported by the German Research Foundation (SFB 815, project A7 for JP, project A5 for LS; SFB 1039, project B2; SFB 1177, project C2; SCHA 1082/6-1 to LS, and LOEWE program Ub-Net to LS). AA and MH were supported by grants of the Ministry of Higher Education of the Arab Republic of Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Friedrich Beck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aglan, A., Longen, S., Dehne, N. et al. Nitric oxide mediates prolyl hydroxylase 3 expression in mesangial cells and in glomerulonephritis. J Mol Med 95, 257–271 (2017). https://doi.org/10.1007/s00109-016-1503-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1503-3

Keywords

Navigation