Skip to main content

Advertisement

Log in

Long noncoding RNA GIHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs) have been reported to play pivotal roles in a variety of cancers. However, lncRNAs involved in hepatocellular carcinoma (HCC) initiation and progression remain largely unclear. In this study, we identified an lncRNA gradually increased during hepatocarcinogenesis (lncRNA-GIHCG) using publicly available microarray data. Our results further revealed that GIHCG is upregulated in HCC tissues in comparison with adjacent non-tumor tissues. High GIHCG expression is correlated with large tumor size, microvascular invasion, advanced BCLC stage, and poor survival of HCC patients. Functional experiments showed that GIHCG promotes HCC cells proliferation, migration, and invasion in vitro, and promotes xenografts growth and metastasis in vivo. Mechanistically, we demonstrated that GIHCG physically associates with EZH2 and the promoter of miR-200b/a/429, recruits EZH2 and DNMT1 to the miR-200b/a/429 promoter regions, upregulates histone H3K27 trimethylation and DNA methylation levels on the miR-200b/a/429 promoter, and dramatically silences miR-200b/a/429 expression. Furthermore, the biological functions of GIHCG on HCC are dependent on the silencing of miR-200b/a/429. Collectively, our results demonstrated the roles and functional mechanisms of GIHCG in HCC, and indicated GIHCG may act as a prognostic biomarker and potential therapeutic target for HCC.

Key Message

  • lncRNA-GIHCG is upregulated in HCC and associated with poor survival of patients.

  • GIHCG significantly promotes tumor growth and metastasis of HCC.

  • GIHCG physically associates with EZH2.

  • GIHCG upregulates H3K27me3 and DNA methylation levels on the miR-200b/a/429 promoter.

  • GIHCG epigenetically silences miR-200b/a/429 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    Article  PubMed  Google Scholar 

  2. Michelotti GA, Machado MV, Diehl AM (2013) NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol 10(11):656–665

    Article  CAS  PubMed  Google Scholar 

  3. Nakano M, Tanaka M, Kuromatsu R, Nagamatsu H, Tajiri N, Satani M, Niizeki T, Aino H, Okamura S, Iwamoto H et al (2015) Sorafenib for the treatment of advanced hepatocellular carcinoma with extrahepatic metastasis: a prospective multicenter cohort study. Cancer Med. doi:10.1002/cam4.548.

  4. Harimoto N, Shirabe K, Ikegami T, Yoshizumi T, Maeda T, Kajiyama K, Yamanaka T, Maehara Y (2015) Postoperative complications are predictive of poor prognosis in hepatocellular carcinoma. J Surg Res 199(2):470–477

    Article  PubMed  Google Scholar 

  5. Lanaya H, Natarajan A, Komposch K, Li L, Amberg N, Chen L, Wculek SK, Hammer M, Zenz R, Peck-Radosavljevic M et al (2014) EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat Cell Biol 16(10):972–981, 971-977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daskalow K, Rohwer N, Raskopf E, Dupuy E, Kuhl A, Loddenkemper C, Wiedenmann B, Schmitz V, Cramer T (2010) Role of hypoxia-inducible transcription factor 1alpha for progression and chemosensitivity of murine hepatocellular carcinoma. J Mol Med (Berl) 88(8):817–827

    Article  CAS  Google Scholar 

  7. Gravitz L (2014) Liver cancer. Nature 516(7529):S1

    Article  CAS  PubMed  Google Scholar 

  8. Forner A (2015) Hepatocellular carcinoma surveillance with miRNAs. Lancet Oncol 16(7):743–745

    Article  PubMed  Google Scholar 

  9. Yuan SX, Wang J, Yang F, Tao QF, Zhang J, Wang LL, Yang Y, Liu H, Wang ZG, Xu QG et al (2015) Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology 63(2):499–511

    Article  PubMed  Google Scholar 

  10. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC et al (2014) A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25(5):666–681

    Article  CAS  PubMed  Google Scholar 

  11. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641

    Article  CAS  PubMed  Google Scholar 

  12. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21

    Article  CAS  PubMed  Google Scholar 

  13. Gutschner T, Hammerle M, Diederichs S (2013) MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl) 91(7):791–801

    Article  CAS  Google Scholar 

  14. Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, Yan X, Ye B, Li C, Xia P et al (2015) The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 16(4):413–425

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Sun W, Shen W, Xia M, Chen C, Xiang D, Ning B, Cui X, Li H, Li X et al (2016) Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J Hepatol. doi:10.1016/j.jhep.2016.01.019

  16. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, Vergara IA, Davicioni E, Erho N, Ghadessi M et al (2013) The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 45(11):1392–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521(7551):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pandey GK, Mitra S, Subhash S, Hertwig F, Kanduri M, Mishra K, Fransson S, Ganeshram A, Mondal T, Bandaru S et al (2014) The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell 26(5):722–737

    Article  CAS  PubMed  Google Scholar 

  19. Collins JF (2015) Long noncoding RNAs and hepatocellular carcinoma. Gastroenterology 148(2):291–294

    Article  CAS  PubMed  Google Scholar 

  20. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A et al (2015) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162(5):974–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsiao BY, Chen CC, Hsieh PC, Chang TK, Yeh YC, Wu YC, Hsu HS, Wang FF, Chou TY (2011) Rad is a p53 direct transcriptional target that inhibits cell migration and is frequently silenced in lung carcinoma cells. J Mol Med (Berl) 89(5):481–492

    Article  CAS  Google Scholar 

  22. Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H, Luscher B, Amati B (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449(7164):933–937

    Article  CAS  PubMed  Google Scholar 

  23. Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA, Sultan M, Stachurski K, Ryzhova M, Warnatz HJ et al (2014) Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510(7506):537–541

    Article  CAS  PubMed  Google Scholar 

  24. Li GM, Wang YG, Pan Q, Wang J, Fan JG, Sun C (2014) RNAi screening with shRNAs against histone methylation-related genes reveals determinants of sorafenib sensitivity in hepatocellular carcinoma cells. Int J Clin Exp Pathol 7(3):1085–1092

    PubMed  PubMed Central  Google Scholar 

  25. Zhang C, Li H, Wang Y, Liu W, Zhang Q, Zhang T, Zhang X, Han B, Zhou G (2010) Epigenetic inactivation of the tumor suppressor gene RIZ1 in hepatocellular carcinoma involves both DNA methylation and histone modifications. J Hepatol 53(5):889–895

    Article  CAS  PubMed  Google Scholar 

  26. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043

    Article  CAS  PubMed  Google Scholar 

  27. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW et al (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416(6880):552–556

    Article  CAS  PubMed  Google Scholar 

  28. Ning X, Shi Z, Liu X, Zhang A, Han L, Jiang K, Kang C, Zhang Q (2015) DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett 359(2):198–205

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G et al (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129

    Article  CAS  PubMed  Google Scholar 

  30. Cheng AS, Lau SS, Chen Y, Kondo Y, Li MS, Feng H, Ching AK, Cheung KF, Wong HK, Tong JH et al (2011) EZH2-mediated concordant repression of Wnt antagonists promotes beta-catenin-dependent hepatocarcinogenesis. Cancer Res 71(11):4028–4039

    Article  CAS  PubMed  Google Scholar 

  31. Qadir XV, Han C, Lu D, Zhang J, Wu T (2014) miR-185 inhibits hepatocellular carcinoma growth by targeting the DNMT1/PTEN/Akt pathway. Am J Pathol 184(8):2355–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640

    Article  CAS  PubMed  Google Scholar 

  33. Le LT, Swingler TE, Crowe N, Vincent TL, Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA, Clark IM (2015) The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl). doi:10.1007/s00109-015-1374-z

  34. Yang CR, Shih KS, Liou JP, Wu YW, Hsieh IN, Lee HY, Lin TC, Wang JH (2014) Denbinobin upregulates miR-146a expression and attenuates IL-1beta-induced upregulation of ICAM-1 and VCAM-1 expressions in osteoarthritis fibroblast-like synoviocytes. J Mol Med (Berl). doi:10.1007/s00109-014-1192-8

  35. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  36. Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB, Villadsen SB, Gao S, Ostenfeld MS, Borre M et al (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 128(6):1327–1334

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS, Xu D, Bi HS, Wang F, Sun SH (2013) Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 34(3):577–586

    Article  PubMed  Google Scholar 

  38. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    Article  CAS  PubMed  Google Scholar 

  39. Roy SS, Gonugunta VK, Bandyopadhyay A, Rao MK, Goodall GJ, Sun LZ, Tekmal RR, Vadlamudi RK (2014) Significance of PELP1/HDAC2/miR-200 regulatory network in EMT and metastasis of breast cancer. Oncogene 33(28):3707–3716

    Article  CAS  PubMed  Google Scholar 

  40. Yuan JH, Yang F, Chen BF, Lu Z, Huo XS, Zhou WP, Wang F, Sun SH (2011) The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology 54(6):2025–2035

    Article  CAS  PubMed  Google Scholar 

  41. Zhou YM, Cao L, Li B, Zhang RX, Sui CJ, Yin ZF, Yang JM (2012) Clinicopathological significance of ZEB1 protein in patients with hepatocellular carcinoma. Ann Surg Oncol 19(5):1700–1706

    Article  PubMed  Google Scholar 

  42. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cristobal I, Rincon R, Manso R, Carames C, Aguilera O, Madoz-Gurpide J, Rojo F, Garcia-Foncillas J (2014) Deregulation of miR-200b, miR-200c and miR-429 indicates its potential relevant role in patients with colorectal cancer liver metastasis. J Surg Oncol 110(4):484–485

    Article  PubMed  Google Scholar 

  45. Peng F, Jiang J, Yu Y, Tian R, Guo X, Li X, Shen M, Xu M, Zhu F, Shi C et al (2013) Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis. Br J Cancer 109(12):3092–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362(9399):1907–1917

    Article  PubMed  Google Scholar 

  47. El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365(12):1118–1127

    Article  CAS  PubMed  Google Scholar 

  48. Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO, Wong CM (2012) Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology 56(2):622–631

    Article  CAS  PubMed  Google Scholar 

  49. Wong CM, Wei L, Au SL, Fan DN, Zhou Y, Tsang FH, Law CT, Lee JM, He X, Shi J et al (2015) MiR-200b/200c/429 subfamily negatively regulates Rho/ROCK signaling pathway to suppress hepatocellular carcinoma metastasis. Oncotarget 6(15):13658–13670

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-mei Yang.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Cheng-jun Sui and Yan-ming Zhou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Cj., Zhou, Ym., Shen, Wf. et al. Long noncoding RNA GIHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429. J Mol Med 94, 1281–1296 (2016). https://doi.org/10.1007/s00109-016-1442-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1442-z

Keywords

Navigation